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THE EVOLUTION OF PHENOTYPIC PLASTICITY IN LIFE-HISTORY
TRAITS: PREDICTIONS OF REACTION NORMS FOR AGE AND
SIZE AT MATURITY
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Abstract.—We used life-history theory to predict reaction norms for age and size at maturation.
We assumed that fecundity increases with size and that juvenile mortality rates of offspring decrease
as ages-at-maturity of parents increase, then calculated the reaction norm by varying growth rate
and calculating an optimal age at maturity for each growth rate. The reaction norm for maturation
should take one of at least four shapes that depend on specific relations between changes in growth
rates and changes in adult mortality rates, juvenile mortality rates, or both. Most organisms should
mature neither at a fixed size nor at a fixed age, but along an age-size trajectory. The model makes
possible a clear distinction between the genetic and phenotypic components of variation. The
evolved response to selection is reflected in the shape and position of the reaction norm. The
phenotypic response of a single organism to rapid or slow growth is defined by the location of its
maturation event as a point on the reaction norm.

A quantitative test with data from 19 populations and species of fish showed that predictions
were in good agreement with observations (r = 0.93, P < 0.0001). The predictions of the model
also agreed qualitatively with observed phenotypic variation in age and size at maturity in humans,
platyfish, fruit flies, and red deer. This preliminary success suggests that experiments designed to
test the predictions directly will be worthwhile.
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This paper develops predictions for norms
of reaction of the maturation event, then
makes preliminary tests of the predictions.
A norm of reaction represents the range of
potential phenotypes that a single genotype
could develop if exposed to a specified range
of environmental conditions (Woltereck,
1909). Life-history traits are directly in-
volved in survival and reproduction: size at
birth, age and size at maturity, age- and size-
specific birth and death rates, and so forth
(Cole, 1954).

There are at least two reasons to introduce
predictions about norms of reaction to work
on life-history evolution. Although life-his-
tory theory is well-developed (Cole, 1954;
Lewontin, 1965; Gadgil and Bossert, 1970;

Schaffer 1974a, 1974b, 1979; Charlesworth
and Leon, 1976; Leon, 1976; Michod, 1979;
Law, 1979; Charlesworth, 1980; reviews in
Stearns, 1976, 1977, 1980, 1982a, 19825b)
and has had some success (e.g., Wilbur and
Collins, 1973; Stearns and Crandall, 1981;
papers in Dingle and Hegmann, 1982; re-
views in Stearns, 19824, 19825; Stearns and
Crandall, 1984; Roff, 1984), strong tests of
the theory are not easy to carry out because
tests of many predictions require that a re-
sponse to selection be observed. Thus one
reason to develop predictions for norms of
reaction of life-history traits is the hope that
some predictions will be testable within a
single generation, or on existing data gath-
ered for other purposes, and that the num-
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ber of points at which the theory can be
brought into risky contact with experiment
and observation will be increased.

Second, although we have known since
the work of Johannsen (1909) and Wolter-
eck (1909) that the evolution of norms of
reaction has important implications for
ecology and genetics (Schmalhausen, 1949;
Simpson, 1953; Waddington, 1957; Levins,
1968; Dobzhansky, 1970), and although
population geneticists have long recognized
that norms of reaction play an important
role in their theory (Wright, 1931; Lewon-
tin, 1974; Gupta and Lewontin, 1982; Via
and Lande, 1985), we know of no predic-
tions about the shape and position that
norms of reaction should take. Thus a sec-
ond reason for this work is to develop ex-
plicit predictions of norms of reaction in the
hope that they will prove useful to evolu-
tionary theory in general.

We set out to answer a specific question.
How should an organism encountering an
unavoidable stress that results in slower
growth alter its age at maturity to keep fit-
ness as high as possible despite the con-
straints imposed by slower growth? Much
evidence suggests that such adjustments are
possible and are made by many types of
organisms. The question is whether the ob-
served changes in age and size at maturity
can be interpreted as life-history adapta-
tions that maximize fitness under given con-
straints.

Background

The evidence comes from diverse sources.
Among fish, faster growing plaice (Pitt, 1975)
and Arctic char (Grainger, 1953) mature
earlier and at the same size as slower grow-
ing ones. In rainbow trout, brown trout, and
sticklebacks (Scott, 1962; Bagenal, 1969;
Wootton, 1973), the fastest growing fish
mature earliest. Some populations of Atlan-
tic cod mature earlier and at smaller sizes
than others (Pinhorn, 1969). Alm (1959) re-
viewed many cases in which more slowly
growing fish matured later and at a smaller
size, and a few cases in which they matured
earlier and at a smaller size. Male platyfish
(McKenzie et al., 1983) delay maturity and
mature at smaller sizes when forced by food
or temperature stress to grow more slowly,
as do laboratory rats (Kennedy and Mitra,
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1963) and wild house mice (Barnett, 1965,
1973). More slowly growing male slider tur-
tles delay maturity and mature at smaller
sizes, while more slowly growing females
mature at the same age as rapidly growing
females and at considerably smaller sizes
(Gibbons et al., 1981).

Well-fed human females attain menarche
at 12-13 years of age and are fit to conceive
at 18, whereas food-stressed 19th century
women attained menarche at 15-17 and
were fit to conceive at 22 (Frisch, 1978).
Bongaarts (1980) presents substantial evi-
dence that malnutrition delays menarche in
humans (but see Bullough, 1981). Well-fed
women reach menarche 2-5 years earlier
than malnourished women, and they appear
to do it by growing faster and achieving a
larger body size at maturity.

Thus five patterns are reported in the lit-
erature. When organisms are forced to grow
more slowly, they 1) mature later at a small-
er size, 2) mature later at the same size, 3)
mature later at a larger size, 4) mature ear-
lier at a smaller size, or 5) mature at the
same age at a smaller size. As Gibbons et
al. (1981) show, the two sexes can have dif-
ferent responses, e.g., (1) for males and (5)
for females.

Part of this diversity of responses prob-
ably represents genetically based local ad-
aptation rather than variation along a norm
of reaction. Such cases include the Atlantic
cod and slider turtles mentioned above. Part
of this diversity also results from the di-
versity of factors influencing growth rates.
Food stress produces different responses
than temperature stress, and low tempera-
tures during embryonic development pro-
duce different responses than do the low
winter temperatures encountered by juve-
nile fish (Brett, 1979). The social mecha-
nisms involved in intraspecific competition
can interact with density and food ration to
produce complex effects on growth rates
(Magnuson, 1962), and can alter predation
risk through differential exposure in natural
situations (Hamilton, 1971; Werner et al.,
1983).

Many other complications are possible
and likely. It would be self-defeating to rep-
resent all ecological and behavioral com-
plexities in these models. We have assumed
that generalized “stress” affects growth and
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that no matter what environmental factors
cause them, changes in growth rates have
similar impact on life-history evolution. We
note, however, that if different factors pro-
duce different norms of reaction despite their
identical effects on growth rate, the different
responses have probably evolved because
the differences among the factors are cues
to differences in the association of changes
in growth rates with changes in adult and
juvenile mortality rates. These things we
have modelled. In any particular case, close
empirical analysis of the impact of different
factors may be necessary to apply the models
correctly.

The consequences of growth for the evo-
lution of age at maturity have been explored
by Gadgil and Bossert (1970), Wilbur and
Collins (1973), Wilbur (1975), Schaffer and
Elson (1975), Schaffer (1979), Stearns and
Crandall (1981), and Roff (1984). Roff’s pa-
per summarizes a large body of fisheries data
and should be compared with this one. The
idea that age at maturity is determined by
a balance between the advantages of short
generation time and the advantages of large
size is widespread in the life-history litera-
ture. The use of life-history theory to predict
reaction norms was suggested by Stearns
(1983) and developed by Stearns and Cran-
dall (1984). This paper differs from Stearns
and Crandall (1984) in that the theory has
been simplified and more thoroughly ex-
plored, the number of case studies has been
increased, and the predictions have been
tested on additional data sets (with essen-
tially the same results).

THE MODEL

General Model: Assumptions and
Definitions

This model assumes that a) fitness is de-
fined by the Malthusian parameter 7 in the
Euler-Lotka equation, and therefore that b)
populations are in stable age distribution,
¢) no constraints inhibit evolution near local
optima, and d) delaying maturity reduces
juvenile mortality rate. It accounts for
growth by assuming that fecundity is di-
rectly related to size. Thus a late-maturing
organism has a higher initial fecundity rate
than an earlier-maturing organism with the
same growth rate.
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Assumptions (a—c) are practical, but as-
sumption (d) requires comment. We as-
sume that parents that are older and larger
when they first reproduce make offspring of
higher quality with better chances of sur-
viving to maturity. By considering the lim-
iting case in which a newly-born female at-
tempts to give birth, one can see that for
most organisms mortality rates of offspring
must rise to infinity as age at maturity of
mothers decreases to 0. From this it follows
that mortality of offspring must decrease in
some manner as age at maturity of the
mother increases.

There are few data available to justify this
assumption, which seems plausible a priori.
Stafford (unpubl.) analyzed factors influ-
encing mortality in 107,038 infant deaths
(National Center for Health Statistics, 1972)
representing a sample for the entire U.S. in
1960-1961. He found that the infant mor-
tality rate per 1,000 live births was high for
mothers less than 15 years old (58.7),
dropped for teenagers 15-19 years old (32.8),
remained low (22.3-25.6) for women be-
tween 20 and 39 years old, then rose to 30.6
in women aged 40-44, and to 41.1 in wom-
en over 45. The left-hand portion of this
relationship, the part covering actual and
potential ages at maturity, can be well-fitted
by describing juvenile mortality as an in-
verse function of age at maturity. Thus in
at least one organism our assumption is jus-
tified. Whether such effects are widespread
taxonomically is not yet known.

In some submodels, we assumed that
changes in growth rate were associated with
changes in juvenile or adult mortality rates.
By this we did not mean that changes in
growth cause changes in fitness. Instead, we
meant to account for cases in which a change
in growth rate acts as a reliable signal to the
organism that well-defined changes in the
demographic environment can be expected.
Growth rate thus acts as a cue for upcoming
environmental events that cause changes in
adult or juvenile mortality and have done
so dependably through evolutionary time.
The problem is essentially one of life-his-
tory evolution in variable environments, and
we assume that the optimal life history is
one in which r is maximized in each envi-
ronment encountered. Charlesworth (1980)
has shown that this should hold for spatial
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mortality

—
N

] A2 age

Fic. 1. Examples of mortality for two ages at ma-
turity, @, and a,. Juvenile mortality decreases as ma-
turity is delayed, whereas adult mortality is not affected
by age at maturity.

variation affecting growth rate but that for
temporal variation it will hold only if the
environmental period is long in relation to
generation time.

Calculating Optimal Age at Maturity

Definitions of symbols are given in Table
1. Writing x for age, k for growth rate, « for
age at maturity, d for instantaneous mor-
tality rate, a for adult mortality rate, and j
for juvenile mortality rate, we defined func-
tions for mortality (Fig. 1) as

_Ja(k) for x = «

d(x, @ k) = {j(a, k) forx < a
and for fecundity (Fig. 2) as

_]b(s(x, k)) for x = «

e, k) = {0 forx < o

where b represents birth rate and s(x, k)
determines size of organism.

According to our assumptions, fitness ()
is defined by the Euler-Lotka equation

J’m b(x, )l(x, Je > dx =1 1)

where

Ix, )= expl:— f d(x, a, k) dx]
0
= survivorship.

Any value of age at maturity, «, at which
fitness is locally maximal must satisfy

0
._.1:0

Ew™ ©))
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fecundity

a age

FiG. 2. An example of the relationship between fe-
cundity and size. A linear function (fecundity = 2 x
size) is shown.

and
6_2'.
da?
As is shown in the Appendix, Equation (2)

results in a curve, r,, defining locally sta-
tionary values of r in terms of «,

) b(a)l(a)
=< Ing d[a(a — )] >
da

while Equation (3) limits « to those values
satisfying

< 0. 3)

(C)

ar,

> 0.
da 0

&)

If « is restricted to those values that satisfy
(5), optimal age at maturity can be found
by inserting Equation (4) into the Euler-Lot-
ka relation (1) and solving the resulting
equation for «, which is equivalent to find-
ing the intersection of curves (1) and (4)
(Fig. 3). In examining this figure, one should
recall that r. is determined by taking the
derivative of the Euler-Lotka equation with
the integral equal to some constant ¢, and
the intersection of the two curves in Figure
3 locates the point where this constant—the
integral in the Euler-Lotka equation —equals
1. The value of « for which r_ is maximal,
Omax, May be attained for a value of « at
which the Euler-Lotka equation is not 1. If
Eq. (5) holds, then «,,, must come to the
right, at a later age, than the optimal r sat-
isfying the Euler-Lotka equation.

To summarize the argument, we can say
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fitness

Qopt Amax
age at maturity

Fic. 3. For any age at maturity («), there will be a
value of r at which the derivative of r with respect to
a = 0 (ignoring discontinuities). These values of rdefine
a curve, r,, that represents one of the three conditions
necessary for a local optimum in r with respect to a:
a) first partial derivative = 0, b) second partial deriv-
ative negative, and c) integral in Euler-Lotka equation =
1. The second condition (b) implies that the partial
derivative of r, with respect to o must be positive, and
this in turn implies that the maximum of r, must be
to the right of «,,,, as indicated in the figure. In brief,
to find optimal age at maturity, one looks for the in-
tersection of r(«), the curve defined by the Euler-Lotka
equation, with r(a), the curve defined by dr/da = 0,
provided that the intersection occurs where 9dr./da > 0.

that finding optimal age at maturity comes
down to finding values of « that simulta-
neously satisfy

f ) b(x)(x)e > dx =1

and
ar,
— >
da 0
where
: b))
re=—1In dla(@ — )]
da
Implementation

To define precise functions for mortality,
fecundity, and growth, we assumed that
adult and juvenile mortality rates are in-
versely related to growth rate and that de-
laying maturity decreases juvenile mortality
rate. We assumed that fecundity grows lin-
early with size and that size at a given age
follows the Von Bertalanffy equation. Spe-
cifically,
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TaBLE 1. List of symbols.

Meaning

X age

a age at maturity

r Malthusian parameter, defined by Euler-Lotka
relation

function defining critical 7, defined by dr/da = 0

size (defined by Von Bertalanfty equation)

weight

length

growth rate

limiting size

difference between limiting size and size at
birth, expressed as a proportion of limiting
size

fecundity of mature organism

rate at which fecundity increases with size

intercept of line relating fecundity to size

adult mortality

adult mortality for growth rate equals 1

power to which inverse of growth rate is
raised

juvenile mortality

constant shifting juvenile mortality up or
down

power to which inverse of growth rate is
raised

v power to which inverse of age at maturity is

raised

TSR ENE wAaESges

>~

Q

a(k) = a/k”

Y
J(a’ k) - kaa.y + aO

b(s(x, k)) = Fs(x, k) + H
S(x, k) = A(1 — Be*)

where a(k) is adult mortality, j(a, k) is ju-
venile mortality, b(s(x, k)) is fecundity, and
s(x, k) is size. Note that fecundity rate in-
creases steadily with age, whereas juvenile
and adult mortality rates are independent
of age, but dependent on age at maturity. A
list of symbols is given in Table 1, and the
relations among the variables and submod-
els are depicted in Figure 4. Note that as A
increases, juvenile mortality rates increase,
and as vy increases, the curve relating ju-
venile mortality rates of offspring to age-at-
maturity of parents bends towards the axes.
The strength of association between growth
rates and juvenile mortality rates is deter-
mined by o¢; high values indicate a strong
association between slow growth and high
juvenile mortality. Similarly, 7 determines
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s = A(1-Be *X)

size at
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b= Fs+H

sze /__ size a

age

SUBMODELS 1&2

no effect
aduit

ot [ ——

growth rate

growth rate k

adult mortality —————————

fec :

size

fecundity

EULER-
LOTKA
equation

optimize

fitness r
-t

adult ~1/k‘r
mort |L

growth rate

SUBMODELS 3&4

SUBMODELS 1&3

no effect

juv
ol —

growth rate

mortality

~A°.,

juv
mort

growth rate

SUBMODELS 284

age at

age at maturity maturity

Fic. 4. The flow of the logic and the relationships among the submodels. Growth rates naturally affect size
at a given age, and through size they affect fecundity. They can also be associated, not as causes but as correlates,
with changes in adult and juvenile mortality rates. Given a certain relationship between fecundity and mortality
on the one hand, and age on the other, one can solve the Euler-Lotka equation for the age at maturity that
produces the optimal fitness, in this context assumed to be r. This optimal age at maturity in turn influences
the instantaneous juvenile mortality rate, and this relationship is taken into account in calculating the optimal r.

the strength of association between growth
rates and adult mortality rates; when 7 = 0,
there is no association, and as 7 increases,
the association becomes stronger.
Inserting these functions into the Euler-
Lotka relation (1) and letting r = r_ leads to

(a + r)b(agy, k) + kb(co, k)
@+r)a+tr.thk ©

—xU+r) = 1.

(6

Equation (6) can be solved numerically for
oy, which will be the optimal age-at-matu-
rity if, evaluated at «,,

ar,

da

> 0.

This model, which we now examine in
detail, serves only as a base of reference. It
is possible to model any trade-offs that can
be represented in equations for a(.), j(.), b(.),
and s(.), and then solve Eq. (6). We do not
think it is more important, more general, or
more realistic than the other models that we
analyzed and that are mentioned below.
What is general is the modeling framework,
which provides a list of assumptions that
have to be made and parameters that have
to be estimated. In any particular case, these
assumptions and parameter estimates must
be checked and a specific model built for
the organism in question. This we did for
the case studies reported below.
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INTUITIVE INTERPRETATION

In this framework (Fig. 4), fitness depends
on age at maturity both through generation
time and through juvenile mortality. Fit-
ness depends on size through the size-fe-
cundity relationship, and size depends on
growth rate and age. Delaying maturity de-
creases juvenile mortality rates and in-
creases size, thereby endowing organisms
with a higher lifetime expectation of off-
spring. In addition, if age at maturity affects
juvenile mortality rates strongly enough,
then delaying maturity increases the prob-
ability that offspring survive to maturity
themselves. Delaying maturity can thus in-
crease the probability that an organism will
have a greater number of more successful
offspring than earlier-maturing organisms.

However, fitness also increases when gen-
eration time decreases, thereby increasing
the rate of increase in a clone by an effect
analogous to compound interest. To reduce
generation time, maturity must come ear-
lier.

Thus there is a continual conflict as to
whether an organism should mature later
(to decrease juvenile mortality rates of off-
spring and to increase fecundity) or mature
earlier (to reduce generation time). Its fit-
ness is optimal when the increase in fitness
resulting from the combined effects of re-
ducing juvenile mortality rates and increas-
ing fecundity by growing longer is exactly
counteracted by the decrease in fitness re-
sulting from the corresponding increase in
generation time.

The interpretation of several crucial pa-
rameters—A\, ¢, and y—is more complex.
The portion of juvenile mortality rate that
is primarily imposed by the external envi-
ronment is represented by A. One can think
of an increase in A, for example, as a change
in mortality rate caused by the immigration
of a size-selective predator that can feed
most efficiently on smaller prey. The prey
organism might not be able to respond by
developing a defense mechanism, but it
might be able to alter age at maturity, which
would result in changes in juvenile mortal-
ity rates caused by internal adjustments.
Therefore, we think of mortality rates as
having an external, inescapable component
(M) and an internal, adjustable and compen-
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satory component linked through trade-offs
to other life-history traits.

The shape of the curve relating juvenile
mortality rates of offspring to age-at-ma-
turity of parent is determined by v, which
is therefore primarily intrinsic, adjustable,
and thus subject to selection. The strength
of association between changes in growth
rates and changes in juvenile mortality rates,
is determined by ¢, which contains both an
intrinsic and an extrinsic component and is
thus partially subject to selection.

Together with the parameters determin-
ing the growth curve and the fecundity-size
relationship, these are the mathematical
boundary conditions within which the local
optimization of fitness is carried out. They
are related to lineage-dependent biological
constraints, but only loosely. The parame-
ters simplify the constraints on the organ-
ism, and, because they do so for purposes
of mathematical convenience, they mix to-
gether aspects of biology that would remain
separate in other contexts.

With this caveat, one can say that the
model parameters express differences among
lineages that are related to the constraints
implicit in different morphological plans and
developmental systems and that the opti-
mization procedure represents fine-tuning
carried out by microevolutionary adjust-
ment to local conditions. Because the mod-
eling procedure provides for lineage-depen-
dence, it can be applied to a wide variety of
cases with some success (see below). How-
ever, one should remember that whatever
success is achieved in prediction has noth-
ing to do with comparative biology, because
the comparative, lineage-dependent ele-
ment enters the model only through curve-
fitting (e.g., involving growth curves and
size-fecundity relationships), not through
prediction from deeper assumptions. Suc-
cess in prediction means only that the phe-
notype is locally adjusted so that fitness is
optimized within a rather narrow frame-
work of constraints.

BEHAVIOR OF THE MODEL

Shape of the Norm of Reaction for
Age and Size at Maturity

To test the behavior of the model, we
calculated age and size at maturity over a
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size

age

F1G. 5. A reaction norm for age and size at matu-
rity. For each growth rate, k,, specified, an optimal age
at maturity is calculated by solving the Euler-Lotka
relation for the « that results in optimal r. By con-
necting all the points defining optimal age at maturity
and the size of the organism at that age, a norm of
reaction for age and size at maturity can be defined in
age-size space. In the figure, one such reaction norm
(heavy solid line) and four growth curves (where k, >
k, > k; > k,) are shown.

range of growth rates, with all other param-
eters defining growth, fecundity, and mor-
tality fixed, and plotted the resulting trajec-
tories in age-size space (Fig. 5). The shape
of the trajectory connecting optimal ages and
sizes at maturity at different growth rates—
the norm of reaction —turned out to be very
sensitive to the parameters defining mor-
tality rate (Fig. 6). We repeated the numer-
ical analysis of the basic model on four sub-
models that differ in the way mortality rate
depends on growth rate. These submodels
represent different versions of the equations
given above for a(.), j(.), b(.), and s(.). It is
possible to follow the precise changes made
in each model by referring to Figure 4 and
Table 2. The reaction norms in Figure 6
form two series, one showing the effects of
increasing the association between growth
rates and juvenile mortality rates (from
L-shaped [1] through sigmoid [2] to para-
bolic [3]) and the other showing the com-
bined effects of associations between growth
rates and both juvenile and adult mortality
rates (the combination of the conditions that
produce [1] and [2] will produce [4]). For
all the sets of parameters tested, as growth
rate decreased, age at maturity increased.
Whether size at maturity also decreased de-
pended on the submodel (in 2 and 4 it could
increase) and on the parameters chosen. We

S. C. STEARNS AND J. C. KOELLA

size at maturity

1 2
age at maturity

FiG. 6. Four shapes of reaction norms, depending
on the way that growth rates are correlated with mor-
tality rates, are predicted. The differences among the
submodels that lead to the different predictions are
summarized in Table 2: 1) L-shaped, 2) sigmoid, 3)
paraboloid, and 4) keel-shaped.

did not find a combination of parameters
or a submodel in which earlier maturity ac-
companied slower growth.

Submodel 1: No Dependence of Mortality
Rates on Growth Rates.—When neither ju-
venile nor adult mortality rate changes when
growth rate changes, the norm of reaction
of the maturation event (the maturation tra-
jectory) is L-shaped. Independence of mor-
tality rates from growth rates is achieved by
setting 7 and ¢ = 0, so that adult mortality
rate a = a,, and juvenile mortality rate j(«) =
\Na) + a,.

An L-shaped trajectory (trajectory 1 in
Fig. 6) implies that over a range of fairly

.high growth rates, the organisms will appear

to mature at fixed age, changing only their
size at maturity, whereas over a range of
fairly low growth rates the organisms will
appear to mature at fixed size, changing only
their age at maturity. This behavior is due
to the different impact that a given change
in growth rate has on fecundity at high and
at low growth rates. For rapid growth, al-
though a small decrease in growth rate has
alarge effect on fecundity at a given age (Fig.
7), a small increase in age will increase fe-
cundity back to the former level. An organ-
ism must therefore delay maturity only
slightly to maintain its fecundity rate. In
contrast, when growth rates are small, age
at maturity must be greatly increased to
maintain a given fecundity rate.

Thus with slower growth, surviving to a
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TABLE 2. List of submodels used to analyze model. Four submodels differing in the way that mortality depends
on growth rate were analyzed. Each submodel revealed one or two distinct shapes for the trajectory connecting
optimal age and size at maturity. The shapes of the trajectories are defined in Figure 6.

Submodel

Trajectory

1) No dependence of mortality on growth rate

L-shaped

2) Juvenile mortality increases as growth rate decreases

3) Adult mortality increases as growth rate decreases
4) Juvenile and adult mortality increase as growth rate

sigmoid-shaped for low ¢*
paraboloid for high ¢

L-shaped
keel-shaped

decreases

* 5 is a measure of the effect of growth rate on juvenile mortality, i.e., low ¢ means little effect of growth rate, and high ¢ means large effect of

growth rate.

size at which fecundity is high enough to
produce a positive ¥ becomes more impor-
tant than reducing generation time. If the
organism matures early enough, it will be
so small and have such low fecundity that
r will be negative. The optimal » must be
positive to be biologically meaningful, and
if slow growth and early maturation imply
negative r values, then the optimal » must
be associated with later maturity as growth
slows. This conclusion is implicit in the re-
lations of fecundity to size and of size to
age.

Submodel 2: Juvenile Mortality Changes
with Growth Rate. —This variation was im-
plemented by holding 7 = 0 and letting ¢
take on different values, so that adult mor-
tality rate a = q, and juvenile mortality rate
J(a, k) = \Wk°a”) + a,. When ¢ is small, the
association of growth rates and juvenile
mortality rates is weak, but as ¢ increases,
decreases in growth rates imply large in-
creases in juvenile mortality rates. Figure 8
illustrates how trajectories of optimal age at
maturity change shape as the growth-juve-
nile mortality relation strengthens.

Now consider the changes in juvenile
mortality rate that strongly influence this
change in the norm of reaction. For an age
at maturity of 50 days, for A = 100, for adult
mortality a, = 0.01, and for rapid growth
(k = 0.33), a change in ¢ from 0.0 to 0.3
only changes the juvenile mortality rate, j,
from 0.060 to 0.076. However, for similar
parameter values and slowgrowth (k=0.01),
a similar change in ¢ changes the juvenile
mortality rate from 0.060 to 0.179. In all
versions of these models, increases in ju-
venile mortality rates lead to delays in ma-
turity. Therefore, since juvenile mortality

rates increase more rapidly at low than at
high growth rates, the delays in maturity are
more pronounced at low than at high growth
rates (Fig. 8), and the slopes of the matu-
ration trajectories, which are negative, in-
crease.

When the association of growth and ju-
venile mortality rates is moderate (e.g., 0 =
0.2), the maturation trajectories become
sigmoidal. With a sigmoidal maturation tra-
jectory, size at maturity will appear to be
fixed over ranges of high or low growth rates,
while over a range of intermediate growth
rates, size at maturity changes rapidly. If the
association of growth rate and juvenile mor-
tality rate becomes strong enough, the slope
of the maturation trajectory will actually be-
come positive: as growth rate decreases, both
age and size at maturity increase, and the
reaction norm looks like a paraboloid.

Submodel 3: Adult Mortality Changes
with Growth Rate.—When adult mortality
rate increases as growth rate decreases, and
juvenile mortality rate is independent of
growth rate, the trajectories are again
L-shaped. They differ from the maturation
trajectories of submodel 1, where growth
rates and mortality rates are not associated,
mainly in that their slope is greater. For
growth rates less than one, age at maturity
is greater in this model than in submodel 1.

Increasing adult mortality results in a
shorter reproductive period, and therefore
in lower lifetime fecundity. By delaying ma-
turity, an organism can increase its fecun-
dity at the onset of maturity without chang-
ing its reproductive period, thereby
compensating for the loss in lifetime fecun-
dity.

Submodel 4: Both Adult and Juvenile
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Fic. 7. The effects on fecundity of a given change
in growth rate are different for rapid and for slow growth.
For rapid growth, decreasing growth rate by a factor
of three decreases fecundity markedly at a given age
(dotted arrow). However, by increasing age only slight-
ly, fecundity is raised back to its former level (solid
arrow). For slow growth, a much greater increase in
age is needed to compensate a similar change in growth
rate. This explains the L-shape of some reaction norms.

Mortality Rates Change with Growth
Rate.—When both adult and juvenile mor-
tality rates increase as growth rates decrease,
the maturation trajectories become keel-
shaped. Along the portions of the trajecto-
ries to the left, where growth is rapid, or-
ganisms decrease their size at maturity and
increase their age at maturity as growth rates
decrease (Fig. 6). In contrast, along the por-
tions of the trajectories to the right, where
growth is slower, the model implies that it
is advantageous to delay maturity so much
that size at maturity is increased. This in-
crease in size, however, occurs only for such
slow growth, and for such a strong relation-
ship between growth rates and adult mor-
tality rates, that adult mortality exceeds ju-
venile mortality by a factor of 100 or more—
a condition that is not likely to be encoun-
tered in nature.

Position of the Maturation Trajectory

The position of the maturation trajectory
in age-size space depends on the fecundity
rates and mortality rates specified. Age at
maturity is most sensitive to juvenile mor-
tality rate. Increases in A and decreases in y
both delay maturity greatly (Fig. 9). In-
creases in adult mortality rates, although
they also move the maturation trajectory to
the right, have much less impact on age at
maturity than similar changes in juvenile
mortality rates. Changes in fecundity rates,
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Fic. 8. Increasing the correlation between growth

rates and juvenile mortality rates (i.e., increasing o)
increases the slope of the reaction norm.

however, have a strong influence on age at
maturity. When the rate at which fecundity
increases with size itself increases, the op-
timal maturation age shifts to the left: the
organisms mature earlier at all growth rates.

These effects can again be explained in-
tuitively. When fecundity increases rapidly
with size, an organism can produce a given
number of offspring when it is young and
small. The fitness advantage comes through
decreased generation time. When juvenile
mortality rates are increased, the age at ma-
turity up to which 7 is negative comes later
in life because the organisms must grow
longer to attain a high enough fecundity to
have a positive 7. In order to have an op-
timal », which must be associated with later
maturation than a merely positive 7, the or-
ganism will mature later.

This explanation depends strongly on our
assumption that juvenile mortality rate in-
creases as age at maturity decreases. We
readily admit that over a certain range of
ages at maturity, juvenile mortality rates
may not change much as age at maturity
decreases. Over this range, decreases in age
at maturity can actually lower the overall
level of juvenile mortality by decreasing the
time during which the juvenile stage is at
risk. This influence combines with that of
generation time to produce powerful selec-
tion for earlier maturity.

However, when maturation occurs much
earlier than normal, in any organism, then
it interferes with juvenile growth and de-
velopment, and the resulting offspring,
whether eggs or embryos, cannot be prop-
erly developed and provisioned. Thus at
some point early in the life of all organisms,
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the juvenile mortality rate of offspring must
start to increase as maturation comes ear-
lier, as we know it does in humans. Whether
the balance of advantages and disadvan-
tages is determined at a point where in-
creases in juvenile mortality rates are bal-
ancing decreases in generation time, or at a
point where generation time is balancing
increases in fecundity, depends on the pa-
rameters used.

Summary of Predictions

Shape of Trajectory. — These models pre-
dict that norms of reaction for age and size
at maturity should be described by one of
four well-defined maturation trajectories
(Table 2 and Fig. 6). In all cases, maturity
is delayed as growth rates decrease, but the
particular shape of the trajectory depends
on whether or not changes in growth rates
are associated with changes in adult mor-
tality rates, juvenile mortality rates, or both,
and if so, then how strongly associated.

Position of Trajectory (ceteris paribus). —
We see the position of the average matu-
ration trajectory of a population as the ge-
netically determined prerequisite for indi-
vidual development. It summarizes the
evolutionary response of a particular organ-
ismic design to the demographic conditions
encountered in the past, given the internal
constraints of its lineage. For evolutionary
equilibrium, then a) increasing the extrinsic
juvenile mortality rate shifts the trajectory
to the right—the organisms mature later; b)
increasing the intrinsic rate of gain of fe-
cundity with size shifts the trajectory to the
left—the organisms mature earlier; and c)
increasing the extrinsic adult mortality rate
shifts the curve to the right—the organisms
mature later, but not as late as they would
for an equivalent change in juvenile mor-
tality rate.

Position of the Maturation Event for a
Particular Organism along the Maturation
Trajectory.— A maturation trajectory de-
scribes the potential sizes and ages at ma-
turity of a given genotype. In these models,
organisms that are forced by external con-
ditions to grow more slowly always delay
maturity, but the precise manner in which
they do so depends on conditions summa-
rized in Table 2 and Figure 6. In practice,
to predict a particular age and size at ma-
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FiG. 9. Reaction norms showing optimal age and
size at maturity for three levels of extrinsic juvenile
mortality (determined by M). Increasing A shifts the
reaction norms rapidly to higher ages at maturity, but
does not change their shape.

turity, or to predict the shape of the mat-
uration trajectory, one must define all the
relevant parameters on which the predic-
tions depend: adult and juvenile mortality
rates, their association with growth rates,
rate of gain of fecundity with size, and growth
rates. This is done by building a submodel
in each case.

None of the models developed here is ap-
propriate for any particular organism unless
a submodel has been worked out, as in the
case studies below. This approach is flexible
enough to deal with many cases, but the
assumptions and parameters appropriate to
any given case can only be determined after
a careful consideration of the biology of that
particular species. The models are not gen-
eral, but the framework is.

ALTERNATIVE MODELS

Any life-history model that is even mod-
erately realistic contains so many different
relationships and so many parameters that
one always wonders whether some impor-
tant result might depend on a particular and
sensitive, rather than a general and robust,
feature of the model. To test the robustness
of the results, four alternative models were
analyzed. In each, we changed one of the
basic assumptions.

Determinate Growth. —In this model, we
assumed that the organism stops growing
when it matures. This was the model used
below for human females, and it would hold
in general for organisms with determinate
growth. Fecundity remains constant
throughout the reproductive period, de-
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pending only on juvenile growth rate and
age at maturity:

b(x, k) = FA(1 — Be=*) + H = b(a, k).

All of the trajectories resulting from this
model can be described by the shapes given
above. They are L-, sigmoid-, paraboloid-,
or keel-shaped. Under determinate growth,
the model reacts to changes in parameters
in the same way as the basic model. For
example, increases in juvenile mortality
rates shift the maturation trajectory to the
right, and increasing the association be-
tween growth rates and mortality rates in-
creases the slope of the trajectory. The only
qualitative difference between this and the
basic model is that the slope of the trajec-
tories is slightly increased.

Fecundity Increases with the Cube of
Length. —In this model, we assumed that
fecundity increases with the cube of length,
or approximately linearly with weight:

b(x, k) = FA(1 — Be~*)3 + H.

This model did not differ qualitatively from
the basic model.

Juvenile Mortality Rate Decreases Ex-
ponentially with Age.—In the third model,
we assumed that juvenile mortality, rather
than staying constant throughout the juve-
nile period, decreases exponentially with age:

. A e

J(x, k) (k"m)e + a.

This represents a situation in which juve-
niles are growing out of risk. The principal
qualitative difference between this model
and the basic model is that the trajectories
can become sigmoid-shaped even when ju-
venile mortality is independent of growth
rate (¢ = 0). As in the basic model, delaying
maturity increases the probability that off-
spring will survive to maturity. In contrast
to the basic model, the increase in survival
is greatest for high growth rates, so that the
tendency to delay maturity is greater for
rapid than for slow growth. This leads to
sigmoidal norms of reaction.

Juvenile Mortality Decreases with Size at
Maturity. —In the fourth model, we made
juvenile mortality rates size-dependent
rather than age-dependent:

J(s(@)) = A4 — s())/A]" + a,.
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As in the other models, juvenile mortality
rates increase as age at maturity decreases
(and thus as the difference between limiting
size, A, and size at maturity increases). In
this model, however, juvenile mortality will
never exceed A + a,. In all the maturation
trajectories we have found for this case, both
age and size at maturity increase as growth
rate decreases (trajectory 3 in Fig. 6, a pa-
raboloid).

QUANTITATIVE TEST OF THE MODEL

These models are capable of predicting
norms of reaction (see the case studies be-
low), but they are also capable, given a
growth rate, of predicting the location of the
maturation event along the optimal trajec-
tory. One encounters data on population
means of age and size at maturity in com-
bination with population means of growth
rates much more frequently in the literature
than one encounters data on the shape of
the reaction norm. Therefore we used this
feature to test quantitative predictions of
age and size at maturation. We compared
age at maturity observed in 19 populations
of fish with age at maturity predicted by our
model (Table 3). We only used data sets in
which growth could be well represented by
the von Bertalanffy equation. If the param-
eters of the equation were not given, we
calculated them with the method of Fabens
(1965).

We assumed either that fecundity was lin-
early related to length or that fecundity in-
creased with the cube of length (approxi-
mately linearly with weight). The functions
were thus either b= FL + Hor b= FL? +
H. However, most papers gave fecundity as
a function of the form b = mL”. Whenever
this function could be well approximated
by a straight line, we chose the linear func-
tion because it had been used in the sensi-
tivity analysis. If the cubic function fitted
the data better, we used it. We limited our-
selves to these functions because they can
be readily integrated. In no case did we use
a data set that these functions would have
misrepresented. For example, Mann (1974)
reports that the fecundity of dace in the Riv-
er Stour can be described by

lg(fecundity) = 4.038[lg(length)] — 5.474.

For lengths between 150 mm and 250 mm
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TaBLE 3. Predicted and observed age at maturity for 19 populations of fish. For each population, the predicted
age at maturity was calculated for two values of v, a measure of the effect of age at maturity on juvenile mortality.
One of two different models was used. The length-model assumes that fecundity is linearly related to length,

whereas the weight-model assumes that fecundity is linearly related to the cube of length.

Predicted

seorz')éd y=2 y=15
Species Location Reference Model (years) (years) (years)
Roach R. Stour, England Mann (1973) weight 4.5 6.5 54
Dace R. Stour, England Mann (1974) weight 4.3 4.8 43
Dace R. Frome, England Mann (1974) weight 39 50 4.2
Turbot North Sea Jones (1974) weight 4.0 7.0 6.0
Upland bully New Zealand Staples (1975) length 1.0 1.1 0.9
Pike R. Stour, England Mann (1976) weight 2.2 3.5 3.1
Haplochromis mloto Lake Malawi, Malawi Tweddle and length 14 14 1.0
Turner (1977)
Haplochromis Lake Malawi, Malawi Tweddle and length 1.9 1.7 1.2
intermedius Turner (1977)
Lethrinops parvidens Lake Malawi, Malawi Tweddle and length 3.1 1.6 1.5
Turner (1977)
Roach L. Volvi, Greece Papageorgiou (1979)  weight 3.8 4.3 4.0
Gudgeon R. Frome, England Mann (1980) weight 2.1 30 24
Painted greenling Monterey, U.S.A. DeMartini and weight 3.0 4.0 3.0
Anderson (1980)
Painted greenling Seattle, U.S.A. DeMartini and weight 3.2 4.7 3.7
Anderson (1980)
Mosquito-fish Garden Island, Australia Trendall (1981) length 0.11 0.09 0.09
Mosquito-fish Oakley Dam, Australia Trendall (1981) length 0.21 0.15 0.10
Mosquito-fish Lake Leschenaultia, Trendall (1981) length 0.17 0.13 0.12
Australia
Mosquito-fish Mill Point Road, Australia  Trendall (1981) length 0.65 0.52 0.49
Haddock North Sea Hislop (1984) weight 3.4 48 39
Cod North Sea Hislop (1984) weight 4.5 6.7 5.6

(the range given by Mann), this curve can
be very closely approximated by

fecundity = 0.00115(length)® — 2,302.

When juvenile mortality was not given in
the paper, we estimated it by assuming that
on average two offspring of the first clutch
survive to maturity. The available data did
not allow us to calculate v. However, it can
be shown that if this model holds, ¥ must
be greater than 1. We analyzed the data with
the next larger integer, v = 2, and, to test
for sensitivity of the result to changes in v,
with ¥ = 1.5 as well. In addition, we as-
sumed that adult and juvenile mortality rates
were independent of growth rate, i.e., ¢ =
7=0.

The results are given in Table 3. For both
values of v tested, the correlation of pre-
dicted with observed ages at maturity was
very strong. Fory=2,r=0.93 (P < 0.0001),
and for vy = 1.5, r = 0.94 (P < 0.0001). In
the first case, the standard error of the re-

siduals in the regression of observations on
predictions is 0.20, while in the second case,
it is 0.16. Under the assumption that vy =
2, the predicted age at maturity explains
'81.7% of the variation in the observed ages
at maturity in this data set, while under the
assumption that v = 1.5, the prediction ex-
plains 93.3% of the variation. Similar re-
sults have been presented by Stearns and
Crandall (1981, 1984) and Roff (1984).

Four CASE STUDIES

In order to develop a case study, one must
estimate several parameters. The estimates
we used for these case studies, and the
sources from which we took the data, are
given in Table 4.

Human Females. —As noted above,
poorly nourished women mature three to
four years later and at smaller sizes than do
well-fed women. In Figure 10, we show how
this difference can be interpreted as a single
genotype sliding along a maturation trajec-
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TaBLE 4. Models and parameters used for case studies.
Case study Function Model Parameters Reference
Humans growth W= W_,(1 — Bek%) W., =60 kg assumption
[no growth after maturation] B=0.94
k=0.07...0.2
fecundity b=FW+ H F=0.0375 assumption
H=-125
juvenile A A=21 Bouvier and
mortality J= () c=14 van der Tak
y=3.5 (1976)
Drosophila growth I= 1,41 — Be k%) > =3 mm Shorrocks (1972)
melanogaster B=0.9
k=0.09...0.32
fecundity b=Fl+H F=212 Robertson (1957)
H=-358
juvenile A A=30 Sang (1950)
mortality J= (k) g=0.25
v=2
Red Deer
females growth W= W,(1 — Be*% W, =58.7 kg Clutton-Brock
B =0.89 et al. (1982)
k=0.78
fecundity b=FW+ H F=0.015 Clutton-Brock
H=-0.054 et al. (1982)
juvenile _ A A=26 Clutton-Brock
mortality J= a2 +a, a,=0.08 et al. (1982)
males growth W= W, — Be k) W, =87.6 kg Clutton-Brock
B=0.93 et al. (1982)
k=0.43
fecundity b=Fx—-x)*+H F=-0.54 Clutton-Brock
H=13 et al. (1982)
x,=9(1.43 — k)2
juvenile _A A=15.5 Clutton-Brock
mortality J=ata a,=0.17 et al. (1982)

tory towards earlier maturity at larger sizes
achieved through faster growth. This sug-
gests that the ideas presented here are readi-
ly applied to events familiar to humans. It
also suggests an important point concerning
the demographic transition that is well
known to human demographers. They may
not, however, have realized that the mat-
uration trajectory is predictable under ad-
aptationist assumptions.

When a human population moves through
the transition from underdeveloped to de-
veloped nation, the first demographic effect
is a rapid drop in juvenile mortality achieved
through improvements in medical care and
nutrition. This effect has been widely rec-

ognized as responsible for the high popu-
lation growth rates causing serious prob-
lems in the Third World. There is a
simultaneous decrease in age at maturity
and generation time that powerfully ampli-
fies the effects of reduced juvenile mortality.
Better nourished humans survive better,
grow more rapidly, and mature earlier.
Since rate of population increase is most
sensitive to changes in age at maturity (un-
der such conditions), populations grow very
rapidly in consequence (Cole, 1954; Le-
wontin, 1965; Caswell, 1978). Thus policies
that encourage people in developing coun-
tries to delay reproduction will be just as
effective, or even more effective, than pol-
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icies that encourage people to limit family
size. While this remark is not new, we make
it here to connect it to the evolutionary ex-
planation of the maturation trajectory that
causes the difficulty. That connection is new.

If the reduction in juvenile mortality per-
sists, then we expect an evolutionary re-
sponse causing a shift of the whole trajectory
to the left, further reducing average age at
maturity, but only by about another 6
months (Fig. 10). This probably happened
once during the shift from scavenging to
hunting and gathering, then again during the
shift to farming. This model suggests a fur-
ther, postindustrial shift towards earlier ma-
turity, presupposing no other adaptation af-
fecting life histories.

Male Platyfish. —McKenzie et al. (1983)
have described how age and size at maturity
of male platyfish are effected by genes and
environment. Male platyfish (Kallman and
Schreibman, 1973) are polymorphic for size.
Some of the size differences are caused by
variation at a single locus. Male poeciliids
virtually stop growing when they mature,
and the alleles that Kallman found code for
distinctly different maturation rules.
McKenzie and his colleagues grew male
platyfish of two different genotypes over a
broad range of environmental conditions,
varying temperature, food, water quality,
and crowding. Their results (Fig. 11) show
clearly distinct sets of maturation events.
These sets contain about a hundred points
for each genotype and consist of envelopes
drawn around the maturation events, each
of which is a point in age-size space. The
envelopes suggest underlying L-shaped tra-
jectories that would be consistent with the
simplest assumption of no association be-
tween growth rates and mortality rates.

The variation that generates two envel-
opes rather than two lines in Figure 11 has
two sources: variation at other loci, since
genetic background is not controlled, and
variation in genotype X environment in-
teractions under different environmental
conditions. The fact that the envelopes are
clearly separated shows conclusively that the
locus tested is a gene with major effects that
remain detectable despite a strong attempt
to exaggerate phenotypic plasticity. This case
suggests that in nature we should expect to
encounter families of trajectories generated
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FiGc. 10. The predicted reaction norms for human
females. The upper reaction norm shows the presumed
response to better nutrition that differentiates 19th from
20th century European females (long arrow). The lower
reaction norm shows the predicted evolutionary re-
sponse to lower juvenile mortality rates. The pheno-
typic response to nutrition is thought to account for
most of the observed shift, about 3 years. The eventual
evolutionary response to such a change in juvenile
mortality could shift maturation another year earlier
(short arrow).

by differences among genotypes. Only in
clones raised in the laboratory will the tra-
jectories themselves be directly measurable.

Drosophila. —Well-fed, uncrowded flies
growing at 27°C start to reproduce when
they are 11 days old and weigh about 1.0
mg. Poorly nourished or crowded flies start
reproducing at 15 or 16 days or later, and
weigh about 0.5 mg. This typical difference
can be explained as a life-history adaptation
to minimize the loss of fitness imposed by
slower growth (Fig. 12).

The suggestion that organisms change age
and size at maturity according to predict-
able rules as environmental conditions
change has important consequences for
population dynamics, which are often mod-
eled in Drosophila (Prout, 1984). Their phe-
notypic plasticity is a form of density com-
pensation, in which uncrowded organisms
mature earlier, at larger sizes, and have
higher lifetime fecundities than do crowded
organisms. This effect is predictable, and we
hope it will be included in more realistic
models of population dynamics.

Red Deer. —Clutton-Brock et al. (1982)
have presented beautifully detailed data on
variation in reproductive success of male
and female red deer on Rhum. We used
their data to build a model that contrasts
the maturation trajectories for male and fe-
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Fic. 11. Male platyfish have L-shaped norms of
reaction that resemble those predicted under the sim-
plest assumption of no relation between a change in
growth rate and a change in age-specific mortality rates.
Genotypic variation and genotype x environment in-
teractions explain why one sees envelopes around the
maturation events, each of which is located as a point
within the envelope. p/p* and p‘p? represent two dif-
ferent genotypes controlling a polymorphism in size at
maturity probably maintained as an evolutionarily sta-
ble strategy (ESS). The larger morph has more elaborate
courtship behavior and a shorter intromittent organ,
while the smaller morph has simpler courtship behav-
ior and a longer intromittent organ.

male red deer. We assumed that the major
consequence of small size in males is re-
duced access to mates and that variation in
growth within a year-class would have to be
assessed by comparison with the largest
males in the vicinity, who may well have
originated in other year-classes. Thus, there
will usually be an old, large male in the vi-
cinity with whom maturing males will have
to fight in order to get access to mates.
Smaller females, on the other hand, repro-
duce less frequently and produce offspring
that have higher mortality rates, but no
matter how small they are, they always have
access to mates.

The model is consistent with observed
differences in age at maturity of male and
female red deer on Rhum, and it makes the
prediction that variation in female matu-
ration should be primarily size variation in
the 3rd to 5th years of life, whereas variation
in male maturation should be primarily age
variation from the 4th to the 8th years of
life (Fig. 13). The team on Rhum continues
to gather the data that will test this predic-
tion (Clutton-Brock, pers. comm.).

DiscussioN

Although the evolution of norms of re-
action and the impact of norms of reaction
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Fic. 12. It is well known that fruit flies delay ma-

turity and mature at smaller sizes when stressed by
poor food or high larval densities. The reaction norm
shown is the optimal one predicted by our model given
boundary conditions determined by experimental data.

on evolution have long been recognized as
important elements of evolutionary theory
(Woltereck, 1909; Schmalhausen, 1949;
Simpson, 1953; Dobzhansky, 1970), we
know of no other predictions of the shape
and position of reaction norms. The pre-
dictions about the positions of the reaction
norms, while consistent with published
statements (e.g., Gadgil and Bossert, 1970;
Schaffer and Elson, 1975; Bell, 1977, Stearns
and Crandall, 1981; Crandall and Stearns,
1982; Roff, 1984), provide new details. They
appear to be successful in both qualitative
and quantitative tests. We regard this suc-
cess with some suspicion because the data
were gathered for other purposes, and there-
fore plausible but indirect estimates had to
be used to make any test at all. Moreover,
these models do not explain why Alm (1959)
and Pinhorn (1969) observed fish that ma-
ture earlier at smaller sizes when forced to
grow more slowly.

Nevertheless the predictions were suc-
cessful enough to suggest that experiments
designed to test them directly would be
worth doing, and we are doing them. It also
suggests that similar work on other life-his-
tory traits, such as number and size of young,
will prove rewarding.

Advantages of this Approach. —This
framework of models unifies the explana-
tion of phenomena that were not previously
seen to be related. First, it resolves the dis-
cussion over whether organisms mature at
afixed size or at a fixed age. They do neither.
Instead, they have evolved a norm of re-
action that can be predicted as a well-de-
fined curve of maturation events through
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age-size space. Over part of the reaction
norm, usually associated with slow growth

rates, they will appear to mature at a fixed’

size. Over other parts, they may appear to
mature at a nearly constant age in spite of
changes in growth rates. However, there will
almost always be portions of the reaction
norm, usually at intermediate growth rates,
where both age and size at maturity change
rapidly as growth rates change.

Second, whereas Alm (1959) suggested
that fish share a single, U-shaped reaction
norm, we have found reaction norms with
at least four shapes (none of them is
U-shaped), and further exploration may re-
veal more. There appears to be a small num-
ber of possible reaction norms for matura-
tion. How many is not yet known. The
important point is that each one can be as-
sociated with specific relationships between
growth rates and age-specific mortality rates.

Third, this model clearly distinguishes the
genetic and environmental components of
variation in age and size at maturity, and it
shows how the two interact to determine an
observation. Environmental variation pro-
duces variation in growth rates and age- and
size-specific mortality rates. These changes
operate over evolutionary time to mold the
genetically determined shape and position
of the maturation trajectory. They also work
within a single generation to produce a pure-
ly phenotypic response that determines the
point on the trajectory where a single or-
ganism matures. This point was made for
morphological traits in Daphnia by Wol-
tereck (1909), but without the connections
to fitness provided by life-history theory.

Fourth, this model makes numerous pre-
dictions about both the shape and the po-
sition of reaction norms for maturation,
some of which can be measured in a single
generation. If one knows in advance, for
example, that two populations have differ-
ent demographic histories, then some of
these predictions are testable simply by rais-
ing both populations in the laboratory un-
der a range of environmental conditions.
These models increase the number of places
at which life-history theory comes into risky
contact with experiments and observations.

One Prediction that Differs from Pub-
lished Statements. —Qur predictions about
the influence of changes in juvenile mor-
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Fic. 13. The reaction norms of male and female
Red Deer should differ both in their shape and in their
location in age-size space. Female deer should mature
at about 4 years under a wide range of growth rates,
whereas male deer should delay their age at maturity
considerably when forced to grow slowly. The growth
curves represent average animals described by Clutton-
Brock et al. (1982). This case makes the point that
sexual selection operates on the evolution of reaction
norms of life-history traits.

tality rates on the position of maturation
reaction norms are in apparent conflict with
published statements. We predict that in-
creases in juvenile mortality rates result in
delayed maturation. Cole (1954) and Wil-
liams (1966) made the opposite prediction.
For example, Williams stated, ‘““That organ-
isms with high juvenile mortality rates have
correspondingly rapid development is a sig-
nificant generalization that I assume would
be universally conceded” (p. 89) and “A
given amount of acceleration of develop-
ment in a high-mortality stage will increase
fitness more that it would in a low-mortality
stage. We should expect development to be
most rapid in stages of high mortality” (p.
90), as is the case in amphibian metamor-
phosis, for example.

If the only impact of a change in devel-
opmental rate is on the risk that the devel-
oping individual will not survive to matu-
rity, then Williams’s statement is correct.
Our prediction differs from his because we
have introduced two additional effects: an
effect of age and size of parent on juvenile
mortality rates of offspring, and an effect of
size on fecundity of parent. When these ef-
fects are strong, they can more than balance
the fitness advantage of rapid development
and lead to delayed maturity when juvenile
mortality is increased.

First consider the effect of the fecundity-
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size relationship. We can assume as an ini-
tial condition in the population before the
increase in juvenile mortality rates occurs
that at some smaller-than-normal size at
maturity » would be negative because fe-
cundity would be too low. Therefore ma-
turity occurs at larger sizes than this, just
how much larger being determined by other
factors as discussed above. Somewhere be-
tween the small size where r is negative, and
the actual size-at-maturity, there is a size
where r is 0. Now imagine that juvenile
mortality rates are increased, but that noth-
ing else changes. The size at which r is 0
also increases, because only organisms with
higher fecundities can maintain that », and
only larger organisms have higher fecundi-
ties. This means that the lower bound on
sizes at maturity moves up, and if no other
factors change, the actual sizes at maturity
will also be larger.

Second, consider the effect that change in
age and size at maturity is postulated to
have on juvenile mortality rates of off-
spring. As extrinsic juvenile mortality rates
are increased, the developing organism suf-
fers higher risk if it remains juvenile longer
while delaying maturity, as Williams point-
ed out. However, if by delaying maturity it
can decrease the juvenile mortality rates of
its offspring, then it will have balanced the
extrinsic increase in mortality rates with an
intrinsic decrease, and if the intrinsic effect
is strong enough, it will delay maturity.

Interface with Ecological Factors Gener-
ating Differences in Growth Rates.—This
approach could be applied to two interesting
studies in which subtle interactions within
and between species generate differences in
growth rate: Wilbur and Collins’s (1973)
work on amphibian metamorphosis and
Werner et al.’s (1983) work on predation
risk to foraging sunfish.

Wilbur and Collins suggest that small ran-
dom differences in growth rate within a co-
hort of amphibian larvae of similar initial
size will be amplified by competition and
by size-specific reactions to inhibitory waste
products. The result is that the size distri-
bution of larvae that at first had a normal
distribution with low variance will be
changed into a log-normal distribution with
higher variance. A few individuals will rap-
idly grow to large size and metamorphose
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early, and many individuals will grow slow-
ly and metamorphose late at small sizes.
These organisms are displaying either
L-shaped or sigmoid reaction norms.

Werner and his colleagues point out that
when a cohort of bluegills is subjected to
size-specific predation by bass, the smaller
bluegills retreat to sheltered habitats with
less food where they grow more slowly. The
larger members of the cohort, which run less
risk of being eaten, continue to forage as
before in food-rich, risky habitat and grow
more rapidly as a result. This suggests
another condition under which Williams’
prediction (see above) does not hold: when
faster growth is directly associated with
higher mortality, then organisms may
choose slower growth and lower risk, rather
than accelerating development.

In both cases, our approach can be ap-
plied if data can be gathered on how changes
in growth rates are connected to changes in
fitness through the fecundity-size relation-
ship and through changes in juvenile and
adult mortality rates. The critical step is
achieved when the particular ecological fac-
tors affecting growth are translated into gen-
erally applicable relationships between
growth and life-history traits. Once that step
is made, the tools of life-history theory can
be used to weigh different options in the
currency of fitness.
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APPENDIX

Calculation of Locally Maximal Fitness
By differentiating the Euler-Lotka relation

f b(x)(x)e=~dx =1
with respect to a, we find

—bla)(@)e= + f B ______a[b(;cll(x)] e " dx

- 9—’- fw xb(x)l(x)e~= dx = 0. (A.1)
Ot Ja

For our model
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where
K= f B xb(x)l(x)er* dx > 0.
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