[

Quantitative Predictions of Delayed Maturity

Author(s): Stephen C. Stearns and Richard E. Crandall
Source: Evolution, Vol. 35, No. 3 (May, 1981), pp. 455-463
Published by: Society for the Study of Evolution

Stable URL: http://www jstor.org/stable/2408194

Accessed: 18/12/2008 10:53

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www jstor.org/action/showPublisher?publisherCode=ssevol.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the
scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that
promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

Society for the Study of Evolution is collaborating with JSTOR to digitize, preserve and extend access to
Evolution.




Evolution, 35(3), 1981, pp. 455-463

QUANTITATIVE PREDICTIONS OF DELAYED MATURITY

STEPHEN C. STEARNS AND RICHARD E. CRANDALL
Reed College, Portland, Oregon 97202

Received January 3, 1980.

What are the selective pressures that
have driven the evolution of delayed ma-
turity? K-selection (selection operating at
high population densities) has been sug-
gested as an explanation, but it does not
fit all the data (Wilbur et al., 1974,
Stearns, 1977) and it oversimplifies (Whit-
taker and Goodman, 1979). In a declining
population, the rate of decrease is mini-
mized when age at maturity is maximized
(Hamilton, 1966; Mertz, 1971), but that
explanation is probably not general, for
such populations have an increased prob-
ability of extinction. Four other hypothe-
ses, which we regard as more plausible,
have been suggested: a delay in maturity
results (a) in a gain in fecundity (Tinkle,
1969; Gadgil and Bossert, 1970; Tinkle et
al., 1970; Wiley, 1974; Schaffer and El-
son, 1975; Bell, 1977), (b) in an improve-
ment in the juvenile survival of the off-
spring produced (Wiley, 1974; Hirshfield
and Tinkle, 1977), (c) in a reduction in the
cost of reproduction and an increase in
adult survival rates (Schaffer, 1972; Wit-
tenberger, 1979), or (d) in increased fitness
in the face of unpredictable, catastrophic
larval mortality, where the delay comes in
the egg stage (Livdahl, 1979). These hy-
potheses are not mutually exclusive; all
four could shape the life-history of some
organism.

We have built optimality models in
which reproduction and survival depend
on the age at maturity of the organism.
To keep the models tractable, we assumed
that we could deal with a population as
though it were a set of asexually repro-
ducing, haploid clones, with each clone
endowed with a different life-history. The
optimization procedure tells us which
clone will win the intraspecific competi-
tion for numerical dominance in future
generations. To do this, we have assumed
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that the population is in stable age distri-
bution, and that the definition of fitness
is the rate at which a new allele grows in
the population, where that allele affects
age at maturity, survival, and fecundity.
Thus the unit of selection in these models
is the gene, not the individual or the pop-
ulation, but because we conceive the pop-
ulation as a set of haploid clones, the gene
is effectively equivalent to the individual.
For those who are uncomfortable with this
simplification, we note that this analysis
holds for the marginal effect of a gene sub-
stitution on phenotypes in a haploid, asex-
ual population (cf. Charlesworth and Wil-
liamson, 1975). We also note that a clone
can be growing exponentially in a station-
ary population. In these models, clones
grow exponentially at a rate implied by
the particular age at maturity and survi-
vorship and fecundity schedules with
which they are endowed. Thus the tech-
nical definition of fitness is the Malthusian
parameter (Fisher, 1930), with neither fre-
quency-dependence nor density-depen-
dence, but we denote it as ¥—the intrinsic
rate of increase of a clone.

Our models assume either the fecundi-
ty-gain hypothesis (a), the quality-of-
young hypothesis (b), or both. We have
found that either fecundity-gain or quali-
ty-of-young assumptions can yield predic-
tions of a considerable delay in maturity
when 7 is maximized. Moreover, when we
used published data to predict optimal
ages at maturity on the assumption that
one, the other, or both effects were at
work, the predictions were surprisingly
good.

DEVELOPMENT OF THE MODELS

The models begin with the assumption
of a stable age distribution (Lotka, 1913;
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TABLE 1. List of symbols.

Symbol Definition

@ Age at maturity

Bla,x) Fecundity, a function of both age at maturity and age

y H/F: the ratio of the intercept and slope of the function relating fecundity and age at
maturity

p An exponent defining the curvature of the hyperbola relating juvenile mortality to age

K A constant defining the height of the hyperbola relating juvenile mortality to age

d(a,x) Instantaneous mortality rate

d Constant instantaneous adult mortality rate

h(a) Instantaneous juvenile mortality rate, a function of age at maturity of the parent

Ua,x) Probability of survival from birth to age x, a function of both age and age at maturity

M(a) The component of juvenile mortality that is affected by a delay in maturity

r Two meanings: the instantaneous rate of population growth (in all equations), and the
product-moment correlation coefficient (in statistical tests). See context.

x Age

F The rate of increase of fecundity with age at maturity

G The rate of increase of fecundity with age following maturity

H The intercept of the line relating fecundity to age at maturity

H* The constant value of fecundity for all reproductively active age classes in the Quality

of Young Model

Fisher, 1930: see Table 1 for a list of sym-
bols):

1::fw3unmumxw—Md% (1)
where
loyx) = exp[—fr d(a,s) ds]. 2)

We then require that age at maturity must
satisfy (1) and that population growth rate
must satisfy

0r/da = 0. 3)

We shall say that r is stationary with
respect to variation in a when (3) holds.
Now (3) and (1) imply:

Blo,a)l(a,c)e ™"

5 T

+ Blar,) %]e d.
@)

Geometrically, we are noting that a given
stable age distribution implies a certain
relationship between population growth
rate () and age at maturity (o) upon

which we locate the maximum (Fig. 1).
To obtain a prediction, one must specify
the functions relating fecundity and sur-
vival to age at maturity. We do this three
different ways, specified in the models
that follow.

The Salamander Model (SAM).—This
model was inspired by life history of the
Appalachian Dusky Salamander, Des-
mognathus ochrophaeus (Tilley, unpubl.),
which suggested the following assump-
tions. If we assume that the instantaneous
death rate (d) takes one value (%,) prior
to maturity («), that it may vary for dif-
ferent ages at maturity, and that it be-
comes a constant for all adult ages no mat-
ter what the adults’ ages at maturity, then

_ ) (x<a)
dw”‘b x> a).

More specifically, we assumed that ju-
venile mortality is greater than adult mor-
tality by an amount, M(c), that varies
with age at maturity:

®)

h(e) = d + M(). (6)

Geometrically, this resembles a step of
variable height that relates %(«), the in-
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Fic. 1. A graphical interpretation of the general

method for finding the age at maturity («, on the
abscissa) that maximizes clonal growth rate (v, on
the ordinate). The Lotka-Euler Equation (1) implies
some relationship between » and «: the Lotka tra-
jectory. The requirement that dr/da = 0 implies
some other relationship between » and «: the vari-
ational trajectory. Where the two lines cross, « max-
imizes 7.

stantaneous juvenile mortality rate, to «
(Fig. 2).

Further, if we assume that fecundity
increases linearly as maturity is delayed,
but is constant thereafter, then

Blo,x) = Fo + H. ()

This can be depicted as a series of steps
taking their origin from a straight line
with positive slope (Fig. 3). Finally, for
convenience we defined a parameter, vy,
as the ratio of the slope and the inter-
cept of the line defining the growth in
fecundity with delay in maturity:

vy = HJF.

From (5) we can relate survival to age:

®)

e—h(a).z‘

. (x < o
Ho,x) = {e—h(a)re—d(.t—a)

x>a).

Substituting in (1), we get

1 = Jw (Fa + H)e—h(a)ae—d(.z‘—a)e—rr dx
o
(10)
or
{ = (Fa + H)e—rae—ah(a)
r+d '

This defines the Lotka trajectory, the rela-
tionship of » and « for a clone in stable

1n
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Curve relating juvenile
death rate to age at
maturity

hlog)|- - -~ :
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Instantaneous mortality rate h(o)

Qo Qay
Age at maturity o
F1G. 2. A graphical interpretation of the general
assumptions relating juvenile mortality, 4(«), to age
at maturity, «, and to constant adult mortality, d.
A function of age at maturity, M(«), is added to the
adult mortality rate to produce the juvenile mortality
rate. We envision M as generally positive and de-
clining as age at maturity increases.

age distribution that obeys the assump-
tions made.

r=—-—M() — aﬁM(a) + 1
(2 a+ vy
(12)

which defines the variational trajectory,
the solution to 9#/0ac = 0. Where the lines
defined by (11) and (12) cross, we have
the solution to the problem: for what «
is » stationary (Fig. 1)? Combining (11)
and (12), and recalling (6), we get
F(a + ‘y)ze[—a/(a+y)]ea"6M/6a
14 (@ NW-M(@) — adM/da]
(13)

The rate at which an allele (clone) mul-
tiplies is stationary with respect to varia-
tion in « if and only if « solves (13).

In a particular way, the Salamander
Model has built into it both the fecundity-
gain and the quality-of-young hypotheses.
We therefore built models that made one
or the other assumption, but not both,
to generate predictions that would allow
tests of both simple hypotheses, as well
as the compound hypothesis embodied in
(13).

The Linear Fecundity Model (LFM).—
If we assume that mortality rates are in-
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F1c. 3. A graphical interpretation of the as- FiGc. 4. In the Linear Fecundity Model, a com-

sumptions relating fecundity to age at maturity and
to age in the Salamander Model. We envision fecun-
dity increasing linearly with age at maturity, then
remaining constant at the initial level after the or-
ganism matures. H is the intercept and F the slope:
Bla,x) Fa + H.

sensitive to change in age at maturity,
then

d(a, x) = d, a constant. (14)

Now we take advantage of the slight sim-
plification of mortality assumptions to
make the fecundity assumptions less re-
strictive. If we assume that fecundity
grows with delayed maturity, and may
then either grow or decline with age (x),
then

B(a,x) = Fa + Gx + H. (15)

This assumption can be depicted as a fan
of lines (the Gx element) whose origin can
slide up and down a straight line with
positive slope (the Fa + H element: Fig.
4). Following a procedure similar to the
one outlined for the Salamander Model,
we find that age at maturity maximizes
* when

_ (Fa + Ga + Hy
F

(1 + %)e—[aF/(Fa-&-Ga-&-H)]'

1

(16)

At the age at maturity which solves (16),

F

“FaicCarmE ¢

¥ 17)

plication is introduced: we allow fecundity to vary
linearly after first reproduction, with slope G, while
preserving the other linear relation of fecundity to
age at maturity. Symbols as in Fig. 3.

Note that if juvenile mortality does not
vary with age at maturity and equals the
constant adult survival rate (M(«) = 0,
h(a) = d), and if fecundity is constant
following maturity (G = 0), then (13) and
(16) reduce to the same relationship. This
defines the relationship of the Salamander
Model and the Linear Fecundity Model.

One additional feature of the Linear
Fecundity Model is of interest: when H =
0, maturity will be delayed whenever
F >0and F + G > 0. Thus so long as
the fecundity gained by delaying maturity
exceeds the rate at which fecundity may
subsequently decline with age, delayed
maturity will evolve. This implies that one
could observe individuals whose fecundity
declined with age, yet whose age at ma-
turity had been delayed because their fe-
cundity had increased as they put off mat-
uration. While not paradoxical, this
prediction is difficult to test. For example,
we could not have used the estimation
outlined below on a population of such
individuals.

Now we consider the consequences of
juvenile mortality that varies with age at
maturity, but fecundity that does not.

The Quality of Young Model (QYM).—
We make the same assumptions that we
used to build the Salamander Model, but
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F1G. 5. A graphical interpretation of the rela-

tionship between juvenile mortality and age at ma-
turity used in the Quality of Young Model. We en-
vision juvenile mortality declining hyperbolically
with age at maturity. « is a constant which can be
determined empirically: see text. p, the exponent of
«, determines the rapidity of the hyperbolic decline
in juvenile mortality. In the Quality of Young Mod-
el, the equations converged only if p > 1. Therefore
we set p = 2, the next convenient value, for all the
estimates reported in Table 1.

we also specify that fecundity is a constant
for all ages at maturity,

Bloyx) = H*. (18)

Moreover, if the juvenile mortality de-
clines as some negative power of age at
maturity, then

h(o) = kla® + d. (19)

This specifies that the curve relating ju-
venile mortality to age at maturity is a
descending hyperbola that is asymptotic
to the constant adult mortality rate, d
(Fig. 5, cf. (6) and (2)). With these as-
sumptions, age at maturity is optimal
when
— —p+1
1= _H¥e™P (20)
AMp — Da™?
at which point the population growth rate
is

=K(p_1)—d.

aK

v (21)

Note that if fecundity is constant for all
ages at maturity (F = 0) and if H = H¥*,
and if M = k/o”, then the Salamander
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Model (13) reduces to the Quality of
Young Model (21). Thus both the Quality
of Young Model and the Linear Fecundity
Model (with G = 0) are included as spe-
cial cases in the Salamander Model.

One feature of the Quality of Young
Model is of special interest: there will only
be a solution for finite positive o and 7 if
p > 1. This means that juvenile mortality
must drop off faster than 1/a as maturity
is delayed for the Quality of Young Model
to predict any delay in maturity. For this
reason we used the next convenient pow-
er, p = 2, for the calculations involved in
testing these predictions. This is an addi-
tional a priori assumption about the rela-
tionship of juvenile mortality to age at
maturity that we could not check with the
available data.

METHODS

To test these ideas, we first constructed
a general model as follows. We estimated
the constants F, H, k, d, and H* empir-
ically; we set M(a) = «/p* and y = H/F;
and we used (13) as the master equation
for optimal «. The three particular models
occupy certain parametric regions:

Linear Fecundity Model: k = 0, H* not
used, G = 0;

Quality of Young Model: F = 0, H =
H*,

Salamander Model: G not used.

We used published data on salamanders
(Tilley, 1979) and lizards (Blair, 1960;
Tinkle, 1967; Tinkle and Ballinger, 1972;
Vinegar, 1976) for the estimates of the
constants. There are serious problems
with inferring these parameters from the
available data, for they require that one
know what fecundity or mortality would
have been if the organism had matured at
a different age. We therefore took the fol-
lowing course: to infer fecundity (F,H),
we worked with species where the rela-
tionships between size and fecundity and
size and age are known. By estimating fe-
cundity as a function of size, either length
or weight, over the size range of naturally
mature organisms, then extrapolating that
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TABLE 2. Predicted ages at maturity.
Predicted optimal age at maturity
Empirically estimated constants LFM QYM SAM

Popu- Observed

lation F H N d H* ainyr a r a r a r  Reference
a 1.32 10.6 0.54 0.08 11.7 0.83 # # 0.56 1.63 0.59 1.61 1
b 29.1 21.0 0.13 0.80 45.2 0.83 # # 0.14 6.05 0.18 4.30 2
C 28.8 —13.8 0.28 0.50 5.0 0.83 0.98 1.51 0.44 0.92 1.10 1.34 3
d 54.0 —15.0 0.07 0.83 14.3 0.75 0.62 2.13 0.12 3.77 0.65 2.01 3
e 12.0 -3.0 0.86 0.67 11.8 1.75 0.84 1.03 0.80 0.69 1.43 0.60 3
f 6.5 3.6 0.26 0.73 7.9 1.80 # # 0.37 1.19 0.56 1.00 3
g 3.75 -2.9 0.28 0.60 4.6 1.61f 1.95 0.25 0.46 0.75 2.12 0.20 4
h 1.42 —1.46 4.25 0.26 5.6 5.0 2.86 0.29 3.23 0.15 5.40 O0.11 5
i 1.78 —-2.49 1.44 0.37 4.6 4.0 3.22 0.18 1.48 0.29 3.98 0.11 5

+ Author reported a range of 1.0-2.0; we used the weighted arithmetic mean # Indicates that equation (3) has no solution with e, r > 0 a
Side-blotched lizard, Uta stansburiana, Texas, b* Rusty lizard, Sceloporus olivaceus, Texas, c, d, e, f Eastern Fence lizard, S. undulatus,
South Carolina, Texas, Ohio, Colorado; g Striped Plateau lizard, S wvirgatus, Arizona, h, i Appalachian Dusky salamander, Desmognathus
ochrophaeus, North Carolina, Whiteside and Dry Falls, respectively. (1) Tinkle (1967), (2) Blair (1960); (3) Tinkle and Ballinger (1972); (4)

Vinegar (1975); (5) Tilley (unpubl )

relationship into the immature size classes,
we obtained estimates of F and H.

Even though fecundity is fairly constant
in all these populations after maturity,
there is either a gain in size and fecundity
from « to a + 1, or sufficient variation in
size and fecundity at age at maturity upon
which to base a size-fecundity relation-
ship. We always estimated F and H from
the age at which the organisms naturally
matured and from the next previous age
class (the oldest juveniles). This gives the
estimation procedure the flavor of a local
sensitivity analysis with an a priori as-
sumption that fecundity is a linear func-
tion of size near age at maturity.

Thus

F = [Bla — 2)lla — (a — x)],

where o« — x represents the closest age
class prior to maturity for which estimates
could be made, and

H = B(a) — Fa. (23)

To estimate M(a«) and dM(a)/da we as-
sumed that

(22)

ha) =d + M(a), (24)
and that
M(x) = kla?. (25)

The instantaneous juvenile mortality rate
was estimated as

h(a) = 1 — [Ha)]V™ (26)

The adult mortality rate, d, was estimated
as the average of the instantaneous death
rates over all adult age classes. Both can
be calculated directly from a standard life
table.

k was estimated as the solution to the
equation

k = o’lh(a) — d],
from which
IM/da = —2kla’.

@7

(28)

As we noted above, we used the second
power of « in the denominator of M(w)
because we had found that p must be
greater than 1 in the Quality of Young
Model. The implication of this assumption
is that juvenile mortality declines as the
inverse square of age at maturity.

For example, we predicted that Uta
stansburiana should mature at 0.59 yr
from the Salamander Model, assuming
(0.83 yr) = 3.9/clutch, B(0.15 yr) = 3.6/
clutch, giving, with 3 clutches/yr, F =
(11.7 — 10.8)/(0.83 — 0.15) = 1.32, and
H = (3(0.83 yr) — 0.83F = 11.7 — 1.1
10.6. For h(a) and d, h(0.83) = 1
[1(0.83)]V08 = 0.87; d = (1/2)(0.04
0.12) = 0.08; and « (0.83)%0.87
0.08) = 0.54. This example is represented
by the first line in Table 2 (case a).

Once the empirical constants are spec-
ified, one can either calculate optimal age
at maturity directly by numerically solv-
ing (13), (16), or (20), or one can plot * as

+
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Relative
r
b E E g L years
Age at Maturity
Fi1c. 6. The graphical method for solving (13),

(16), and (20): for each set of assumptions (LFM,
QYM, SAM) we solved the Lotka-Euler equation for
a series of ages at maturity and plotted r as a func-
tion of a. The case shown is the Eastern Fence liz-
ard, Sceloporus undulatus, South Carolina popula-
tion, corresponding to Population ¢, Table 2.

a function of «, solving the Lotka-Euler
equation (1) for each of a series of o’s, and
select as optimal the « for which the curve
peaks (cf. Fig. 6). The two methods give
the same answer, as we ascertained by
using both.

RESULTS

We made nine predictions for each of
the three models (Table 2). In the Linear
Fecundity Model (16), only for six of nine
estimates did the equation converge to an
optimal age at maturity. For those six, the
product-moment correlation of predicted
with observed ages at maturity was r =
0.896 (r?-= 0.803, P < .05). In the Qual-
ity of Young Model (20), for all nine es-
timates the equation converged to a solu-
tion, and the correlation of predicted with
observed ages at maturity was r = 0.929
(r? = 0.864, P < .01). In the Salamander
Model (13) for all estimates the equation
converged, and r = 0.956 (r2 = 0.914,
P < .01).

DiscussioN

Our predictions were fairly good despite
the unrealistic assumptions of asexual
haploid genetics with no frequency or den-
sity dependence and no seasonality. This
may indicate that some conclusions of life-
history theory are insensitive to the relax-
ation of those assumptions. If that is in
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Fi1Gc. 7. Relation between observed and predicted

ages at maturity for nine populations of lizards and
salamanders. Note the poor fit for observed ages at
maturity less than 2.0. a, b, ¢, d, e, f, g, h, i indicate
the populations similarly labeled in Table 2. Predic-
tions made with (13): the Salamander Model.

fact the case—and we do not yet know if
it is—then future theoretical work could
proceed with much simpler assumptions.
We need more models which explore how
much we can simplify while retaining the
power of precise prediction.

One interpretation of the success of
these predictions is that the fixation or dis-
appearance of a new mutant depends crit-
ically on the rate at which it multiplies
when it is at low frequency. If it survives
to attain intermediate frequencies, then its
eventual fixation is much more probable,
for it is past the low-frequency range
where drift is powerful. We think that the
rate of multiplication of a new mutant at
low frequencies is realistically modelled by
asexual haploids with no frequency de-
pendence.

Both the Linear Fecundity and the
Quality of Young models can account for
much of the variation among these pop-
ulations and species in age at maturity,
but the Salamander Model does so re-
markably well (Fig. 7). One might suspect
some hidden circularity in our reasoning,
but when we attempted predictions for
species in which fecundity increases dra-
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matically after maturity (e.g., lake trout,
smooth newts), the equations would not
converge, indicating that we do not au-
tomatically get a prediction close to ob-
servation. Note also that the predictions
are less accurate for observed ages at ma-
turity of about 1 yr. This also argues
against a hidden circularity. Seasonality
constrains reproduction, and we have not
built seasonality into these models. For
example, at the predicted age at maturity
of 0.59 yr, or 215 days, Uta hatched on
June 17th, the earliest date recorded in
Texas (Tinkle, 1967), would lay eggs on
January 18th. Any eggs laid in January
would probably be killed by cold. Season-
ality affects a greater proportion of age at
maturity for animals maturing near 1 yr
than it does for those maturing later.

We expect (13) to work only for those
organisms whose populations show signif-
icant size-fecundity relationships at ma-
turity and shortly thereafter, followed by
constant fecundity later in life: some liz-
ards and salamanders, possibly turtles,
but not most fish, birds, or mammals, for
which other models must be built.

The shape of the » vs. o curves implied
by the Lotka-Euler relationship deserves
comment. In most cases, the Quality of
Young Model implied a trajectory with a
sharper peak than either the Linear Fe-
cundity Model or the Salamander Model.
We have not included in these models all
factors that might mold age at maturity,
just the two we expect to dominate. When
other factors modify age at maturity, we
expect the predictions from models that
imply sharp peaks to be more robust.
Thus we find the precision of the Sala-
mander Model surprising and to a certain
extent coincidental, because for that mod-
el the » vs. « curves are broad and flat for
the two salamander predictions (cases h
and i, Table 2): »; and »5 are 73% and
91% of the population growth rate at the
optimal age at maturity, 7544, for case i.
In other words, the two cases (h and i)
that contribute the most to the precision
of our predictions are precisely the cases
in which we expect our predictions to be
least robust, most easily modified by

S. C. STEARNS AND R. E. CRANDALL

forces not accounted for in the models.
Either there are no forces unaccounted for
in those two cases, or if they exist they
select for the same ages at maturity pre-
dicted here. Seasonality is a factor which
should act to increase the apparent pre-
cision of predictions that are near an in-
tegral number of years, for it will con-
strain organisms to reproduce near age x
which for other reasons might have ma-
tured anywhere between x — 0.5 and x +
0.5.

Given all that has been left out of the
models, the predictions are remarkably
accurate. However, this test does not
demonstrate that there are only two basic
reasons for delaying maturity, or that
M(a) = k/o? and that 8(a) = Fa + H for
lizards and salamanders. It does indicate
that we understand two forces which can
delay maturity, and that this line of
thought looks promising enough to de-
serve more formal testing in a selection
experiment. We also suggest that these
models, or appropriate modifications of
them be used as starting points in attempts
to explain delayed maturity. If the fecun-
dity-gain and the quality-of-young hy-
potheses can delay maturity, then one
should not invoke more complex expla-
nations unless one can show that those we
have put forth here will not suffice.

SUMMARY

We predicted age at maturity in nine
populations of lizards and salamanders
with three models. The correlation of pre-
dicted with observed ages at maturity
ranged from » = 0.896 to » = 0.956. We
assumed that gene substitutions which
change age at maturity also change fecun-
dity or juvenile survival, or both; that
populations can be modelled as sets of
haploid, asexual clones that grow expo-
nentially in stable age distribution; that
clonal growth rate, 7, defines fitness; and
that optimization is an appropriate pro-
cedure.
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