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1. Daniel Bernoulli’s reputation  

An historian of science or physicist would probably say 
this about Daniel Bernoulli: “Ah, Daniel Bernoulli, one of 
the three great Basel Bernoullis, Johann’s second son, 
Jakob’s nephew; born in 1700. He died in 1782, never 
having married. He made fundamental contributions to 
hydrodynamics, including the basic principle that allows 
airplanes to fly and that governs the design of sails and 
boat hulls. He had a horrible time with his hyper-
competitive father (who stole his work on hydrodynamics 
and published it under his own name in a book that  
Johann pre-dated by 10 years to make clear who had 
precedence). He took a degree in medicine but never 
abandoned his first love, mathematics, and was one of 
Leonhard Euler’s best friends and constant supporters. 
After time with Euler and Goldbach in St. Petersburg in 
the golden days of the St. Petersburg Academy (1724–
1732), he returned to Basel in 1732, where his lectures on 
mathematics and physics had exemplary clarity and pro-
found impact. He was one of the great mathematical 
physicists and would have been an even greater experi-
mental physicist had Basel given him the equipment he 
asked for. Of the Bernoullis he was the third best mathe-
matician, that being fast company” (Merian 1860; Speiser 
1939). 
 An economist or evolutionary biologist would, in con-
trast, emphasize the one paper on choice under risk in 
which he distinguishes between wealth and utility, a paper 
not often remembered by physicists or mathematicians. 
That paper (Bernoulli 1738, trans. 1954, written 1730–31) 
has profoundly influenced economic theory, portfolio the-
ory, and operations research and has growing influence in 
evolutionary biology and behavioural ecology. Between 
1983 and 1999 it was cited 36 times (according to the 

Web of Science database) by people writing on decision 
theory, risk management, mathematical probability, ex-
pected utility, cognition and choice, ecology, evolutionary 
ecology, marketing, preference structures, and engineer-
ing design – not bad for a paper written by a mathematical 
physicist 262 years ago.  
 Here I sketch the basic principles of evolution under 
risk and show which were present in Bernoulli’s 1738 
paper – a small tribute to his extraordinarily clear mind in 
the 300th anniversary of his birth. Bernoulli taught us to 
measure risk with the geometric mean and recommended 
minimizing risk by spreading it across a set of independ-
ent events (bet-hedging). He also defined the situations in 
which one should avoid risk, from which it is a short step 
to recognizing those in which one should choose risk. 
 

2. How to measure risk: the geometric mean 

One type of evolutionary risk is temporal variance in  
fitness: increases in variance reduce long-term fitness. 
Measuring fitness as the geometric mean of per-
generation reproductive success properly accounts for this 
kind of risk. The geometric mean is the nth root of the 
continued product of n terms, or the antilog of the arith- 
metic mean of the logarithms of the terms: 

G = geometric mean = (Πxi)
1/n = e1/nΣlnXi  i = 1 . . . n. 

 We use the geometric mean to measure evolutionary 
fitness because fitness is multiplicative. If a genotype has 
reproductive success that is twice the average in this gen-
eration and three times the average in the next, then its 
fitness over those two generations is six times (2 × 3), not 
five times (2 + 3) the average. If each of two children has  
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Figure 1. The portrait of Daniel Bernoulli aged 44 honouring his status as Professor of 
Anatomy and Botany in the medical faculty at Basel. 
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three grandchildren, then there are six, not five, grand-
children. 
 If we hold the arithmetic mean constant, it is easy to 
illustrate how the geometric mean decreases as variance 
increases. Consider two time series of per-generation fit-
ness values with the same arithmetic mean (2⋅5) and dif-
ferent variances: (1) 2, 3, 2, 3, 2, 3, . . .; (2) 1, 4, 1, 4, 1, 
4, . . . . The second series has higher variance (2⋅25) than 
the first (0⋅25). The number of offspring left after 6 gen-
erations in the first is 23 × 33 = 8 × 27 = 216; in the sec-
ond it is 13 × 43 = 64. The geometric mean for the first is 
2⋅449, for the second 2⋅0. The geometric mean gives 
greater weight to low values than does the arithmetic 
mean. It penalizes variance. 
 The properties of the geometric mean have been  
thoroughly investigated in economics. Brieman (1960) 

showed that a strategy that maximizes the geometric mean 
of returns has the highest probability of reaching, or  
exceeding, any given level of wealth in the shortest possi-
ble time, and it has the highest probability of exceeding 
any given level of wealth over any given period of time. 
Gillespie (1974, p 605) noted that “the advantage which a 
genotype gains through producing many offspring in a 
good year does not balance the disadvantage from  
producing few offspring in a bad year.” Bulmer (1985,  
p 70) states, “The type with the higher geometric mean 
fitness will almost certainly predominate in the distant 
future.” Geometric mean fitness implies that the proba- 
bility of extinction increases with the variance in per-
generation fitness (Lewontin and Cohen 1969). Those are 
all good reasons to use the geometric mean to measure  
fitness. 

Figure 2. The title page of Bernoulli’s seminal contribution, published in St. Petersburg in 1738, to the theory of risk. Those who 
prefer English to Latin are referred to the 1954 translation in Econometrica (see literature cited). 
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 Maximizing geometric mean fitness may not always 
predict the distribution of strategies found in a population. 
When fitness has low variance and low values are not ex-
pected for a long time, then predictions based on maxi-
mizing the geometric mean may mislead (Samuelson 
1971), for risk-prone strategies could outcompete risk-
avoidance strategies for a fairly long time – hundreds or 
even thousands of generations depending on the para-
meters. This mistake can be avoided by working with  
invasion models with explicit dynamics. An analysis of 
risk-avoidance mutants invading a population of risk-
prone residents could predict a mixture of risk-prone 
strategies tending toward arithmetic mean growth rate 
maximization, with a shorter time to extinction, and risk-
averse strategies that maximize G, with a longer time to 
extinction, coexisting in the same population. If a single 
genotype can produce a distribution of offspring pheno-
types, then there will be a unique such distribution that 
resists invasion (Sasaki and Ellner 1995). 
 Where did the idea of maximizing geometric mean fit-
ness come from? In the biological literature, later workers 
suggest that Dempster (1955), Haldane and Jayakar 
(1963), Levins (1967), or Lewontin and Cohen (1969) 
introduced it as the appropriate measure for populations 
experiencing temporal variation. They thought the idea 
was obvious enough not to need attribution. In economics, 
discussions of G also cite modern authors who find it  
obvious. The earliest use I have found is in Bernoulli 
(1738, trans. 1954), in the context of analysing the rela-
tionship of utility to wealth:  
 
 “Any gain must be added to the fortune previously pos-
sessed, then this sum must be raised to the power given by 
the number of possible ways in which the gain may be 
obtained; these terms should then be multiplied together. 
Then of this product a root must be extracted the degree 
of which is given by the number of all possible cases, and 
finally the value of the initial possessions must be sub-
tracted therefrom; what then remains indicates the value 
of the risky proposition in question.” (op. cit. p 28). 
 
Bernoulli illustrated the geometric mean with an example 
of a merchant wondering whether he should purchase  
insurance on goods he is about to ship: 
 
 “Suppose Caius, a Petersburg merchant, has pur-
chased commodities in Amsterdam which he could sell for 
ten thousand rubles if he had them in Petersburg. He 
therefore orders them to be shipped there by sea, but is in 
doubt whether or not to insure them. He is well aware of 
the fact that that at this time of year of one hundred ships 
which sail from Amsterdam to Petersburg, five are usu-
ally lost. However, there is no insurance available below 
a price of eight hundred rubles a cargo, an amount which 
he considers outrageously high. The question is, there-

fore, how much wealth must Caius possess apart from the 
goods under consideration in order that it be sensible for 
him to abstain from insuring them? If x represents his 
fortune, then this together with the value of the expecta-
tion of the safe arrival of his goods is given by 
((x + 10000)95x5)1/100 in case he abstains. With insurance 
he will have a certain fortune of x + 9200. Equating these 
two magnitudes we get (x + 10000)19x = (x + 9200)20 or, 
approximately, 5043. If, therefore, Caius, apart from the 
expectation of receiving his commodities, possesses an 
amount greater than 5043 rubles he will be right in not 
buying insurance. If, on the contrary, his wealth is less 
than this amount he should insure his cargo.” (op. cit. 
p 30). 
 
In evolutionary biology we can substitute fitness for for-
tune and define the number of possible ways in which a 
gain may be obtained as the reproductive success in  
each of a series of generations. We then see that Bernoulli 
gave us, in principle, a definition of geometric mean  
fitness. 

3. Geometric mean approximations: Mean-variance 
analysis 

The most widely used approximation for the geometric 
mean is G = µ – σ2/2µ, where µ is the arithmetic mean 
and σ2 is the variance. There are many other approxima-
tions in the literature. Young and Trent (1969) tested the 
performance of 5 of them by calculating the geometric 
mean and each of the approximations for 233 time series 
of stock values 60 periods long. There were no significant 
differences in performance; all five approximations esti-
mated G with much less than 1% error. 
 My search for the origin of the approximation of the 
geometric mean by the arithmetic mean minus a variance 
term suggested that many people do not read the literature 
and reinvent the wheel. A discovery thought important 
enough in evolutionary biology to be named a new evolu-
tionary principle is considered trivial enough in mathe-
matical statistics to be given as a problem for students to 
work out for themselves in the second chapter of Kend-
all’s advanced theory of statistics (Stuart and Ord 1994). 

4. Bet-hedging: don’t put your eggs in one basket 

Bernoulli (1738. 1954, p 30) wrote: “Another rule which 
may prove useful can be derived from our theory. This is 
the rule that it is advisable to divide goods which are ex-
posed to some danger into several portions rather than to 
risk them all together.” This strategy of spreading risk was 
formalized in economics in Markowitz (1952), has often 
been applied in evolutionary biology (references in Sasaki  
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and Ellner 1995), and is what meant by “bet-hedging:” do 
not put your eggs in one basket. Note that the environ-
ment does not need to be variable or heterogeneous for 
selection to favour bet-hedging; it simply needs to create 
risk at all places and times. 

5. Risk-prone and risk-averse behaviour 

Traits are usually connected to fitness non-linearly in  
organisms, as is wealth to utility in classical economics. If 
the relationship of fitness (Y-axis) to trait (X-axis) is con-
cave down, then reducing variance in the trait, being risk 
averse, will increase fitness. If the fitness-trait relation is 
concave up, then increasing variance in the trait, being 
risk prone, will increase fitness (figure 3). 
 The concept of concave-down, risk-averse utility was 
discovered by Bernoulli (1738). Its generalization to non-
linear curves with proper probability theory is due to 
Hölder (1889) and Jensen (1906). One of their results, 
Jensen’s inequality, is a useful aid in interpreting the con-
sequences of variation in nonlinear systems (Ruel and 
Ayres 1999). Tobin (1958), for example, applied it to 
choice under economic risk. Utility theory and the con-
cave-up/down distinction have become pervasive in  
economics.  
 In evolutionary biology we think about the connection 
of traits to fitness rather than the connection of wealth to 
utility. When the relationship of trait to fitness is concave-
up and risk-prone, increasing the variance of the trait  
increases fitness; when it is concave-down (the classic 
case) and risk-averse, increasing the variance of the trait 
decreases fitness (Stephens and Krebs 1986). This appli-
cation has been developed by Real and Ellner (1992). 
  Bernoulli’s perspective on risk-prone and risk-averse 
behaviour can be applied with advantage to the analysis of 
several important contrasts in life-histories and evolution-
ary genetics, including the following: (i) the contrast  
between semelparity, or one reproductive event per life-
time (risk-prone), and iteroparity, or more than one repro-
ductive event per lifetime (risk-averse); (ii) the contrast 
between local settlement of offspring in the parental habi-
tat (risk-prone), and broad dispersal of offspring over a 
wide area (risk-averse); (iii) the contrast between asexual 
reproduction of genetically identical offspring (risk-
prone), and sexual reproduction of genetically diverse 
offspring (risk-averse). This list is not exhaustive. It does 
suggest the rich diversity of the phenomena that can be 
partially united under Bernoulli’s perspective. 

6. Mean-variance fitness isoclines  

A second method of dealing with risk emerges when we 
consider several traits that affect reproductive perfor- 

mance (or several investment instruments that affect long-
term gains). Suppose several traits each contribute to fit-
ness through a mean and a variance. A given fitness – a 
long-term geometric mean growth rate – can result from 
many combinations of means and variances of traits. Some 
components might contribute a low mean and a low vari-
ance, others a high mean and a high variance. We call the 
combinations that yield the same fitness value a mean-
variance fitness isocline in multi-trait space. Investment 
should then be distributed across those fitness components  

Figure 3. The distribution of a trait in the offspring of a focal 
individual is plotted as a normal distribution on the X-axis. The 
relationship of the trait to fitness is depicted as a curve. If the 
curve is concave-down (upper panel), the normal distribution of 
the trait is transformed into a left-skewed distribution of fitness 
on the Y-axis. Here normal variation of the trait creates greater 
penalties than it does rewards. Selection should act to reduce 
variation in the trait. If the curve is concave-up (lower panel), 
the normal distribution of the trait is transformed into a right-
skewed distribution of fitness on the Y-axis. Here normal varia-
tion of the trait creates greater rewards than it does penalties. 
Selection should then act to increase variation in the trait.  
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to yield maximum fitness given the constraints on the  
organism. 
 Markowitz (1952) stated that investors should seek to 
minimize variance in return by diversifying their invest-
ments while maximizing mean return. He defined the effi-
cient set of portfolios as those with the maximum mean 
return for a given variance and those with minimum vari-
ance for a given mean. He saw that there was a mean-
variance tradeoff, and he suggested but did not formalize 
the concept of mean-variance isoclines of equal growth  
rate (cf. Ekbohm et al 1980; Real and Ellner 1992): “The 
portfolio with maximum expected return is not necessarily 
the one with minimum variance. There is a rate at which 
the investor can gain expected return by taking on vari-
ance, or reduce variance by giving up expected return” 
(Markowitz 1952, p 79). 
 Bernoulli (1738) did not contribute to the analysis of 
mean-variance tradeoffs and isoclines; that came later.  

7. Invasion in the general case with frequency  
dependence and potential chaos 

It is now standard to analyse the evolutionary process as a 
game in which strategies are tested by the invasion of  
alternatives, and to estimate the fitness of a strategy as its 
invasion exponent, the rate at which it reproduces when 
rare. In the general case this is the Lyapunov exponent 
(see next paragraph for a definition), which reduces to the 
geometric mean of the per-generation growth rates in the 
simple case of a series of generations whose growth rates 
are known. Framing evolution as an invasion process 
automatically reveals frequency-dependence if it is  
present. Invasibility is not the only relevant criterion –
attainability is also critical, for not all parts of phenotype 
space can always be reached from all other parts. For 
more on this see Dieckmann (1997). 
 Ellner (1989) proved that the invasibility criterion for 
an analysis of evolutionarily stable strategies (ESSs) is 
geometric mean fitness. Ferriére and Gatto (1995) gener-
alized this. They defined the Lyapunov exponent as fol-
lows: Let MT be the transition matrix for the population 
(the Leslie matrix would be a particular case). Let A be an 
invader and R be a resident. Then s, the Lyapunov expo-
nent, is defined for an invader with respect to a resident as 
 

,log/1lim)( ∑
∞→

= T
T

R TaS µ  

 
where T is time and µT is the dominant eigenvalue of the 
transition matrix, i.e. λT in the usual life-history notation. 
Here the Lyapunov exponent, the fitness measure for  
invasion, is given as the limit of the geometric mean of 
the per-year (or other time unit) growth rates defined by 

the sequence of transition matrices characterizing the 
conditions in each year. Doebeli (1998) showed that suc-
cess depends on the resident, for some invaders can even 
create the conditions for their own elimination. 
 
 

8. Who knew what and when did they know it? 

The economists generally got there first, but the biologists 
sometimes took it further. Among the biologists, Cohen 
(1966) notes the analogy to investment theory, and Lewon-
tin and Cohen (1969) acknowledge a debt to economics. 
There is no trace of input from economics in Schaffer 
(1974) or Gillespie (1974). Concepts from portfolio the-
ory enter biology explicitly in Real (1980), who notes that 
under uncertainty, a portfolio of behaviours is better than 
a single behaviour and that negative covariance of the 
fitness contributions of the behaviours in the portfolio is 
advantageous because it reduces the variance in fitness.  
 At least since Cohen started mean-variance analysis in 
biology, biologists have preferred to separate the arith- 
metic mean and the variance rather than to combine them 
in the geometric mean as a summary measure. This ref-
lects a similar stance in economics, where leading text-
books on portfolio theory advocate the separation of mean 
and variance, to allow one to think about their separate 
effects, rather than using the geometric mean, which con-
flates their effects.  
 I do not wish to suggest that the analogy between eco-
nomic and evolutionary risk is exact, but it is suggestive. 
We know that spatial and temporal variation contribute 
differently to evolutionary fitness (Gillespie 1974). In 
economics, investors certainly worry about variation in 
rates of return and risk in different countries, and they 
might want to look into the evolutionary analogy for some 
technical insights. A second complicating factor in evolu-
tion is the regular genetic recombination generated by 
sexual reproduction. This has a rough, certainly not a pre-
cise, analogy to the annual reshuffling of portfolios by 
fund managers who respread the risk regularly. 

9. Some interesting recent insights into  
evolutionary risk 

The train of thought started by Bernoulli in 1738 conti-
nues to spawn insights in evolutionary biology. For exam-
ple, Lacey et al (1983) applied variance discounting to 
each trait separately. They found that both mean and vari-
ance contribute to fitness in empirical examples and found 
cases where negative covariances produced compensating 
impacts on fitness. Their work suggests the following 
idea: The phenotypic plasticities of the traits contributing 
to fitness should be so designed that the traits covary 



J. Biosci. | vol. 25 | No. 3 | September 2000 

Daniel Bernoulli 

 

227 

negatively to minimize variance in fitness. This sees traits 
as stocks in a portfolio, and phenotypic plasticity as ideal 
management practice.  
 Up to this point, we have been discussing bet-hedging 
and risk-spreading strategies as though they were proper-
ties of asexual clones with perfect heritability. What hap-
pens with sexual reproduction and the potential for kin 
selection? A first step towards an answer was taken by 
Frank and Slatkin (1990). In a haploid, one-locus, two-allele 
model, they partition variance in reproductive success into 
parts attributable to individuals and parts attributable to  
correlations in reproductive success among individuals. 
When frequency-dependence is important – when varia-
tion in one individual’s reproductive success induces 
variation in the reproductive success of other individu-
als – the geometric-mean principle may not predict which 
allele wins, although it does so in special cases. Bet  
hedging for genotypes means that a trait or behaviour 
produces a low correlation in reproductive success among 
individuals of the same genotype, in effect increasing the 
number of independent samples of reproductive success 
for that genotype. Bet hedging for individuals means  
reducing the correlations in reproductive success among 
offspring by putting eggs into different baskets. 
 Sasaki and Ellner (1995) asked how many different 
phenotypes can be maintained by environmental variance,  
and whether a strategy of producing those phenotypes 
with separate genotypes will win against a strategy that 
produces them all from a single genotype. They found that 
as the environmental variance increases, and all types play 
against all types, the number of phenotypes maintained 
increases, but those phenotypes are distributed in discrete 
blocks, not continuously. Genotypes that made several 
phenotypes – polyphenotypic strategies in which parents 
produce a variety of offspring – always invaded a poly-
morphic population of similar but genetically fixed pheno-
types. They did so because of their bet-hedging advantage, 
for by producing a variety of progeny they reduced the 
temporal variance in per-generation fitness. 

10. Phenotypic evolution under uncertainty and risk 

10.1 Diapause and dormancy 

Cohen (1966) concluded that variation in reproductive 
success and postbreeding adult survival would shape the 
optimal fraction of the population that should germinate 
or reproduce in a given year. “One obvious way to survive 
and reproduce in a risky environment is to spread the risk 
so that one failure will not be decisively harmful.”  

10.2 Iteroparity and reproductive effort 

Schaffer (1974) showed that for iteroparous organisms, 
adding variation in reproductive success favours reduced 

reproductive effort, and adding variation in adult post-
breeding survival favours increased reproductive effort. 
Lacey et al (1983) showed that Daucus carota is selected 
to be biennial over annual because of environmentally 
induced variation in cohort fitness. 

10.3 Sex versus asex in risky environments 

Robson et al (1999) showed that sexually reproducing 
organisms invade asexually reproducing populations more 
easily as risk (variance in reproductive success) increases. 
Leonard (1999) suggested that sexual reproduction was a 
form of individual bet-hedging, and Doebeli and Koella 
(1994) showed that sex dampens tendencies towards  
chaotic population dynamics. Their work suggests that we 
could look at sex from the point of view of a single gene 
that could influence the proportion of sexual or asexual 
reproduction. If it is living in an environment that selects 
for risk-spreading, then sexual reproduction has an advan-
tage for the gene: it will find itself in the next generation 
in each of a number of genetically different offspring. To 
the extent that each offspring interacts with the environ-
ment independently, sex spreads risk (cf. Frank and Slat-
kin 1990; Sasaki and Ellner 1995). 

11. Conclusion 

In this 300th anniversary of Daniel Bernoulli’s birth, this 
essay traces the influence of one of his works usually  
regarded by mathematicians and physicists as too minor to 
mention. From this source has flowed much of our under-
standing of how to deal with risk in economics and evolu-
tion. The concepts introduced by Bernoulli help us to 
think about the evolution of reproductive lifespan, dor-
mancy and diapause, sexual versus asexual reproduction, 
and population dynamics. In economics they form the 
foundation of portfolio and insurance theory. The 1738 
paper was definitely not minor. 
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